• Title/Summary/Keyword: Infiltration Capacity

Search Result 147, Processing Time 0.021 seconds

The Ways of Improving Technical Standards to Increase Effectiveness of Wetting Agent (침윤소화약제의 효과성 증대를 위한 기술기준 개선방안)

  • Jang, Kwan Su;Kim, Jung Min;Cho, Young Jae
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.3
    • /
    • pp.581-588
    • /
    • 2022
  • Purpose: This study is about offering ways of improving existing technical standards in order to propose how to deal with coal deep-seated fire and to increase effectiveness of wetting agent. Method: This study conducts infiltration experiment using eight tons of coal, three types of wetting agents and fire water. And this study analyzes domestic and international technical standards, overseas experimental cases. Result: It is found that two findings are identified; one is fire water cannot infiltrate into the coal due to high level of surface tension, and the other is three types of wetting agent can infiltrate into the coal to the depth of 5~25cm. Also, domestic wetting agent technical standards include measuring surface tension only and testing wood on extinguishing capacity test. On the other hand, this study found that deep-seated fire experiment using cotton, B-class fire test using heptane are used from abroad. Besides it is analyze that capillary rise test, sink test, contact angle measurement are conducted to increase effectiveness of wetting agent at the U.S. Bureau of Mines. Conclusion: Based on standards and cases of U.S. NFPA and Bureau of Mines, this study suggests that domestic technical standards should include adding a new test standard which measures infiltration directly.

Estimation of Water Quality Variation in Sewer Network using MOUSE TRAP Model (MOUSE TRAP 모델을 이용한 하수관거내 수질변화 예측)

  • Yang, Hae Jin;Jun, Hang Bae;Son, Dae Ik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.743-752
    • /
    • 2009
  • One of the major problems associated with operation of domestic sewer lines involves hydraulic problems such as insufficient conveyance capacity, exceeding maximum velocity, and deficiency of minimum velocity. It has also been pointed out that influent concentration lower than design concentration of pollutants, which is mainly caused by unidentified inflow and infiltration, degrades the operational efficiency of many sewage treatment plants (STPs). A computer-added analysis method supporting a coupled simulation of sewage quality and quantity is essentially required to evaluate the status of existing STPs and to improve their efficiency by a proper sewer rehabilitation work. In this study, dynamic water quality simulations were conducted using MOUSE TRAP to investigate the principal parameters that governs the changes of BOD, ${NH_4}^+$, and ${PO_4}^{3-}$3- concentrations within the sewer networks based on data acquired through on-site and laboratory measurements. The BOD, ${NH_4}^+$ and ${PO_4}^{3-}$3- concentrations estimated by MOUSE TRAP was lower than theoretical pollution loads because of sedimentation and decomposition in the sewer. The results revealed that sedimentation is a most important factor than other biological reactions in decreasing pollutant load in the sewers of C-city. The sensitivity analysis of parameters pertaining to water quality changes indicated that the effect of the BOD decay rate, the initial DO concentration, the half-saturation coefficient of dissolved BOD, and the initial sediment depth is marginal. However, the influence of settling rate and temperature is relatively high because sedimentation and precipitation, rather than biological degradation, are dominant processes that affect water quality in the study sewer systems.

ROKN's Response Strategy to North Korea's SLBM Threat (북한 SLBM 위협과 대응방향)

  • Moon, Chang-Hwan
    • Strategy21
    • /
    • s.40
    • /
    • pp.82-114
    • /
    • 2016
  • The purpose of this article is to analyze the progress of North Korea's SLBM threat, and to assess the technological capacity and threat level of its SLBMs. Currently, North Korea has approximately 1000 ballistic missiles, such as the SCUD, Musudan, and Nodong, in stock. This article pays close attention to the background and strategical implication behind North Korea's obsession with developing SLBMs despite possessing sufficient means to launch provocations with its current arsenal of ground based ballistic missiles and conventional weapons. Based on the abovementioned analysis, this article will recommend possible response directions for the ROK Armed Forces to North Korea's SLBM threat. It is highly difficult to detect SLBMs due to its stealthy nature, as it is launched underwater after covert infiltration. North Korea's SLBM is considered a game changer in that even one SLBM can significantly change the strategic balance of North East Asia. North Korea's SLBM test launch in August has made a 500km flight, landing 80km inside the JADIZ (Japan Air Defense Identification Zone), and as such, it is assessed that North Korea already possesses underwater ejection and cold launch capabilities. The most realistic response to North Korea's imminent SLBM threat is bolstering anti-submarine capabilities. ROK Armed Forces need to upgrade its underwater kill-chain by modernizing and introducing new airborne anti-submarine assets and nuclear-powered submarines, among many options. Moreover, we should integrate SM-3 missiles with the Aegis Combat system that possess strong detection capabilities and flexibility, thereby establishing a sea-based Ballistic Missle Defense (BMD) system centered around the Aegis Combat System, as sea-based ballistic missile threats are best countered out in the seas. Finally, the capabilities gap that could arise as a result of budgetary concerns and timing of fielding new assets should be filled by establishing firm ROK-US-Japan combined defense posture.

Case Study on Global Slope Failure Case of Segmental Retaining Wall (블록식보강토옹벽의 전면 사면붕괴 사례연구)

  • Han, Jung-Geun;Cho, Sam-Deok;Jeong, Sang-Seom;Lee, Kwang-Wo;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.2
    • /
    • pp.47-56
    • /
    • 2005
  • Recently, geosynthetic reinforced earth walls are gradually replacing conventional concrete retaining walls for reasons of economy, expediency of construction, and aesthetics. A number of reinforced soil walls having more than 10m heights have been constructed to make more effective development in the country. However, mistakes in design and construction of reinforced earth walls have resulted in many troubles such as failure of reinforced earth walls, horizontal deformationor breakdown of facings, and so forth during or after construction. In this paper, a case study on global sliding failure of a geogrid-reinforced tiered wall is carried out to investigate the causes of the failure and suggest the proper countermeasures. From the subsurface investigation and field instrumentation, It is found that the cause of the global sliding failure was occurred by decreasing of bearing capacity of foundation ground induced by infiltration of rainwater.

  • PDF

Effects of Safflower Seed Extracts and Bovine Bone on Regeneration of Bone Defects in Mongrel Dogs (홍화씨 추출물 및 우골유도합성골이 성견골 결손부 재생에 미치는 영향)

  • Seo, Jae-Jin;Kim, Tak;Pi, Sung-Hee;Yun, Gi-Yun;Yu, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.3
    • /
    • pp.553-569
    • /
    • 2000
  • Many natural medicines have been studied for their capacity and effects of antibacterial, anti-inflammatory and regenerative potential in periodontal tissues. Safflower seed has been traditionally used as a drug for treatment of bone fracture in oriental medicine. The purpose of the present study was to compare the effects of safflower seed extract and bone substitute on bone formation and regeneration in artificial defects in mongrel dogs. The bony defects were made with round bur at mandible and tibia. Extracts of safflower seed and bovine bone were placed directly at each defect for experimental group, and the defect of control group was sutured without any other treatment. Experimental animals were sacrificed at 8 weeks. And then histopathologic reading and histomorphometric study was done. There was not significant differences between control and experimental groups in osteoclastic activity and infiltration of inflammatory cells. However, new capillary proliferation, fibrosis and new bone formation were prominent in safflower seed extract group. The mandibular defects of safflower seed extract group were healed with dense connective and bony tissues, and endochondral bone formation was observed in tibial defect of safflower seed extract group only. New bone area of safflower seed extract group was more significantly increased than that of control and that of bone substitute group. These results indicate that direct local application of safflower seed extracts on bony defects seems to reduces the early inflammatory response and to promotes the bone regeneration.

  • PDF

Application and Assesment of Regrouting Method for Improperly Constructed Wells in Jeju Island (제주도의 오염 방지 시공이 부실한 지하수 관정에 대한 구간 차폐 공법의 적용과 평가)

  • Kim, Mijin;Kang, BongRae;Cho, Heuy Nam;Choi, Sung Ouk;Yang, Won-Seok;Park, Wonbae
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.3
    • /
    • pp.43-51
    • /
    • 2020
  • About 90% of groundwater wells in Jeju Island are reported to be under the threat of contamination by infiltration of the surface pollutants. Most of those wells have improperly grouted annulus which is an empty space between the well and the inner casing. As a remedy to this problem, some of the wells were re-grouted by filling the annulus with cement without lifting an inner casing. In order to evaluate whether this method is appropriate for the geological structure of Jeju Island, two wells (W1 and W2) were selected and this method was applied. The water holding capacity did not decrease while the nitrate levels decreased from 16.8 and 20.2 to 6.8 and 13.8 mg/L in W1 and W2, respectively. The higher nitrate level in W2 is deemed to be influenced by the livestock farms located in the upper area of the well. In addition, transmissivity of the vedose zone was higher in W2 than W1, potentially facilitating the transport of nitrate to the groundwater. The overall result of this study suggests re-grouting of wells for the purpose of protecting water quality of goundwater should take into account geological structure of vadose zone as well as appropriate source control of the contaminants.

HSPF and SWAT Modelling for Identifying Runoff Reduction Effect of Nonpoint Source Pollution by Rice Straw Mulching on Upland Crops (볏짚 피복에 의한 밭 비점오염원 유출저감효과 분석을 위한 HSPF와 SWAT 모델링)

  • Jung, Chung Gil;Ahn, So Ra;Kim, Seong Joon;Yang, Hee Jeong;Lee, Hyung Jin;Park, Geun Ae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.2
    • /
    • pp.47-57
    • /
    • 2013
  • This study is to assess the reduction of non-point source pollution loads for rice straw mulching of upland crop cultivation at a watershed scale. For Byulmi-cheon watershed (1.21 $km^2$) located in the upstream of Gyeongan-cheon, the HSPF (Hydrological Simulation Program-Fortran) and SWAT (Soil and Water Assesment Tool), physically based distributed hydrological models were applied. Before evaluation, the model was calibrated and validated using 9 rainfall events. The Nash-Sutcliffe model efficiency (NSE) for streamflow using the HSPF was 0.62~0.76 and the determination coefficient ($R^2$) for water quality (sediment, total nitrogen T-N, and total phosphorus T-P) were 0.72, 0.62, and 0.63 respectively. The NSE for streamflow using the SWAT were 0.43~0.81 and the $R^2$ for water quality (sediment, T-N, and T-P) were 0.54, 0.87, and 0.64 respectively. From the field experiment of 16 rainfall events, the rice straw cover condition reduced surface runoff average 10.0 % compared to normal surface condition. By handling infiltration capacity (INFILT) in HSPF model, the value of 16.0 mm/hr was found to reduce about 10.0 % reduction of surface runoff. For this condition, the reduction effect of sediment, T-N, and T-P loads were 87.2, 28.5, and 85.1 % respectively. By handling soil hydraulic conductivity (SOL_K) in SWAT model, the value of 111.2 mm/hr was found to reduce about 10.0 point reduction of surface runoff. For this condition, the reduction effect of sediment, T-N, and T-P loads were 80.0, 83.2, and 78.7 % respectively. The rice straw surface covering was effective for removing surface runoff dependent loads such as sediment and T-P.

Comparative Study on the Runoff Process of Granite Drainage Basins in Korea and Mongolia

  • Tanaka, Yukiya;Matsukura, Yukinori
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.79-84
    • /
    • 2003
  • This study revealed the differences in runoff processes of granite drainage basins in Korea and Mongolia by hydrological measurements in the field. The experimental drainage basins are chosen in Korea (K-basin) and Mongolia (M-basin). Occurrence of intermittent flow in K-basin possibly implies that very quick discharge dominates. The very high runoff coefficient implies that most of effective rainfall quickly discharge by throughflow or pipeflow. The Hortonian overlandflow is thought to almost not occur because of high infiltration capacity originated by coarse grain sized soils of K- basin. Very little baseflow and high runoff coefficient also suggest that rainfall almost does not infiltrate into bedrocks in K-basin. Flood runoff coefficient in M-basin shows less than 1 %. This means that most of rainfall infiltrates or evaporates in M-basin. Runoff characteristics of constant and gradually increasing discharge imply that most of rainfall infiltrates into joint planes of bedrock and flow out from spring very slowly. The hydrograph peaks are sharp and their recession limbs steep. Very short time flood with less than 1-hour lag time in M-basin means that overland flow occurs only associating with rainfall intensity of more than 10 mm/hr. When peak lag time shows less than 1 hour for the size of drainage area of 1 to 10 km2, Hortonian overland flow causes peak discharge (Jones, 1997). The results of electric conductivity suggest that residence time in soils or weathered mantles of M-basin is longer than that of K-basin. Qucik discharge caused by throughflow and pipeflow occurs dominantly in K-basin, whereas baseflow more dominantly occur than quick discharge in M-basin. Quick discharge caused by Hortonian overlandflow only associating with rainfall intensity of more than 10 mm/hr in M-basin.

  • PDF

A Study on the Water Cycle Improvement Plan of Low Impact Development (저영향개발 기법의 물순환 개선 방안 연구)

  • Kim, Byungsung;Lim, Seokhwa;Lee, Sangjin;Baek, Jongseok;Kim, Jaemoon
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.2
    • /
    • pp.109-115
    • /
    • 2020
  • Recently, since impervious areas have increased due to urban development, the water cycle system of urban watersheds has been destructed. Hence, researches on LID (Low Impact Development) technique have been conducted to solve such problems environmentally. In order to verify suitability with the scale and arrangement of LID technique, the runoff reduction effect of the LID technique should be analyzed per small watershed unit. In this study, pre-post difference of the runoff by applying the LID was estimated using the rational method and rainwater treatment capacity equation. As a result, the runoff before and after the application of LID were estimated as 22,533.5 ㎥ and 14,992.1 ㎥, respectively. In addition, rainfall-runoff simulations were carried out using SWMM to evaluate the efficiency of the LID technique. The SWMM simulation results showed that the runoff before and after the application of LID were 21,174 ㎥ and 15,664 ㎥, respectively. Based on the results of the two methods, the scale and arrangement of the LID technique were revised in order to maximize the effect of the water cycle improvement. Rainfall-runoff simulations were carried out using the SWMM with the revised LID techniques. As a result, despite 34.8 % reduction of pervious pavement area, the rate of runoff reduction increased by 2.1 %. These results indicate that designing the scale and arrangement of LID technique, while considering the total amount of inflow entering into each LID techniques, is essential to effectively achieve the goals of runoff reduction in urban development.

Effect of Flooding and Soil Salinity on the Growth of Yam (Dioscorea batatas) Transplanted by Seedling of Aerial Bulblet in Saemangeum Reclaimed Tidal Land

  • Sohn, Yong-Man;Song, Jae-Do;Jeon, Geon-Yeong;Kim, Doo-Hwan;Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.8-14
    • /
    • 2011
  • The effect of flooding and soil salinity on the growth of yam (Dioscorea batatas) were studied on the experimantal site temporally established in the south-eastern part of Saemangeum Reclaimed Tidal Land (near Gwanghwal myun, Gimjae-gun, Jellabukdo, Korea). Yam seedlings planted by using aerial bulblet as alternative of sliced tubers, were grown for 20-days and transplanted in black-vinyl mulched ridges (about 20 cm in height) at 70cm interval by $20{\times}60cm$ spacing in the $4^{th}$ of May, 2010. Soil salinity was maintained at lower than 1.2 ds $m^{-1}$ during the growing period and did not result to salt injury in all plants. However, flooding injury very seriously led to plant death and plant mortality rates at $67{\pm}21$ and $82{\pm}9%$ of yam plants in the compost and no compost treatment, respectively, died by heavy flooding during the rainy summer season. The main reasons of the flooding injury included the decreased rainfall acceptable capacity (RAC) after the rising of water table and a slowdown of water infiltration rate after the formation of an impermeable soil crust in the furrow bottom with continuous and heavy downpour during the rainy summer season. The effect of compost treatment was not statistically observed because of the severe spatial difference caused by wet injury, although yam tuber yield was higher at 30 kg $10^{-1}$ in the compost treatment than in the no-compost treatment at 20 kg $10^{-1}$. However, the size of tuber ranged at 1.23 to 1.60 cm in diameter and 3.7 to 5.0 cm in length in all both treatment, which means they are still reproducible for the next cropping season. Conclusively, proper counter-flooding measure and soil salinity control critically important for successful yam production in Saemangeum Reclaimed Tidal Land.