• Title/Summary/Keyword: Infill walls

Search Result 133, Processing Time 0.024 seconds

Application of Artificial Neural Networks to the prediction of out-of-plane response of infill walls subjected to shake table

  • Onat, Onur;Gul, Muhammet
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.521-535
    • /
    • 2018
  • The main purpose of this paper is to predict missing absolute out-of-plane displacements and failure limits of infill walls by artificial neural network (ANN) models. For this purpose, two shake table experiments are performed. These experiments are conducted on a 1:1 scale one-bay one-story reinforced concrete frame (RCF) with an infill wall. One of the experimental models is composed of unreinforced brick model (URB) enclosures with an RCF and other is composed of an infill wall with bed joint reinforcement (BJR) enclosures with an RCF. An artificial earthquake load is applied with four acceleration levels to the URB model and with five acceleration levels to the BJR model. After a certain acceleration level, the accelerometers are detached from the wall to prevent damage to them. The removal of these instruments results in missing data. The missing absolute maximum out-of-plane displacements are predicted with ANN models. Failure of the infill wall in the out-of-plane direction is also predicted at the 0.79 g acceleration level. An accuracy of 99% is obtained for the available data. In addition, a benchmark analysis with multiple regression is performed. This study validates that the ANN-based procedure estimates missing experimental data more accurately than multiple regression models.

Analytical investigation of thin steel plate shear walls with screwed infill plate

  • Vatansever, Cuneyt;Berman, Jeffrey W.
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1145-1165
    • /
    • 2015
  • A behavior model for screw connections is developed to provide a better representation of the nonlinear response of thin steel plate shear walls (TSPSWs) with infill plates attached to the boundary frame members via self-drilling screws. This analytical representation is based on the load-bearing deformation relationship between the infill plate and the screw threads. The model can be easily implemented in strip models of TSPSWs where the tension field action of the infill plates is represented by a series of parallel discrete tension-only strips. Previously reported experimental results from tests of two different TSPSWs are used to provide experimental validation of the modeling approach. The beam-to-column connection behavior was also included in the analyses using a four parameter rotational spring model that was calibrated to a test of an identical frame as used for the TSPSW specimens but without the infill plates. The complete TSPSW models consisting of strips representing the infill plates, zero length elements representing the load-bearing deformation response of the screw connection at each end of the strips and the four parameter spring model at each beam-to-column connection are shown to have good agreement with the experimental results. The resulting models should enable design and analysis of TSPSWs for both new construction and retrofit of existing buildings.

Assessment of infill wall topology contribution in the overall response of frame structures under seismic excitation

  • Nanos, N.;Elenas, A.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.355-372
    • /
    • 2015
  • This paper identifies the effects of infill wall existence and arrangement in the seismic response of steel frame structures. The methodology followed was based on the utilisation of overall seismic response indicators that distil the complexity of structural response in a single value hence enabling their straightforward comparative and statistical post process. The overall structure damage index after Park/Ang ($OSDI_{PA}$) and the maximum inter-story drift ratio (MISDR) have been selected as widely utilized structural seismic response parameters in contemporary state of art. In this respect a set of 225 Greek antiseismic code (EAK) spectrum compatible artificial accelerograms have been created and a series of non-linear dynamic analyses have been executed. Data were obtained through nonlinear dynamic analyses carried on an indicative steel frame structure with 5 different infill wall topologies. Results indicated the significant overall contribution of infill walls with a reduction that ranged 35-47% of the maximum and 74-81% of the average recorded $OSDI_{PA}$ values followed by an overall reduction of 64-67% and 58-61% for the respective maximum and average recorded MISDR values demonstrating the relative benefits of infill walls presence overall as well as localised with similar reductions observed in 1st level damage indicators.

A Basic Study on the Optional Composition for Apartment Housing Design (아파트 단위주호 개발에서 선택사양 구성을 위한 기초연구)

  • Cho, Sung-Heui;Lee, Eun-Joo
    • Journal of the Korean housing association
    • /
    • v.21 no.3
    • /
    • pp.67-76
    • /
    • 2010
  • The purposes of this study are to understand residents' needs in regard to living space and to suggest how to provide layout options for the infill, based on their needs, so that the residents can change their living space to suit their own need. This study analyzed residents' needs in terms of living spaces through literature reviews on apartment remodeling and related previous studies. The results are as follows: First, the residents remodeled the various infill, and remodeling works are then classified into five infill groups according to the flexible features: 1) structural elements, such as flooring, ceilings, interior walls, and windows/doors; 2) equipment elements, such as lighting and electricity, electrical wiring, heating arrangements, and water supply & drainage systems: 3) finishing material elements, such as finishing materials for floors, walls, and ceilings, skirting boards, moldings, and art walls; 4) furniture elements, such as built-in wardrobes, storage closets, and kitchen cabinets; and 5) bathroom facility elements such as faucets and sinks. Second, based on the remodeling features, four ways to provide options can be suggested. 1) options are provided for each room; 2) options are provided in connection with structural elements; 3) options are provided for each finishing material element; and 4) options are provided with the combinations of different bathroom facilities.

The effect of infill walls on the seismic behavior of boundary columns in RC frames

  • Fenerci, Aksel;Binici, Baris;Ezzatfar, Pourang;Canbay, Erdem;Ozcebe, Guney
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.539-562
    • /
    • 2016
  • The seismic behavior of a ${\frac{1}{2}}$ scaled, three-story three-bay RC frame with masonry infill walls was studied experimentally and numerically. Pseudo-dynamic test results showed that despite following the column design provisions of modern seismic codes and neglecting the presence of infill walls, shear induced damage is unavoidable in the boundary columns. A finite element model was validated by using the results of available one-story one-bay frame tests in the literature. Simulations of the examined test frame demonstrated that boundary columns are subjected to shear demands in excess of their shear capacity. Seismic assessment of the test frame was conducted by using ASCE/SEI 41-06 (2006) guidelines and the obtained results were compared with the damage observed during experiment. ASCE/SEI 41-06 method for the assessment of boundary columns was found unsatisfactory in estimating the observed damage. Damage estimations were improved when the strain limits were used within the plastic hinge zone instead of column full height.

Experimental vs. theoretical out-of-plane seismic response of URM infill walls in RC frames

  • Verderame, Gerardo M.;Ricci, Paolo;Di Domenico, Mariano
    • Structural Engineering and Mechanics
    • /
    • v.69 no.6
    • /
    • pp.677-691
    • /
    • 2019
  • In recent years, interest is growing in the engineering community on the experimental assessment and the theoretical prediction of the out-of-plane (OOP) seismic response of unreinforced masonry (URM) infills, which are widespread in Reinforced Concrete (RC) buildings in Europe and in the Mediterranean area. In the literature, some mechanical-based models for the prediction of the entire OOP force-displacement response have been formulated and proposed. However, the small number of experimental tests currently available has not allowed, up to current times, a robust and reliable evaluation of the predictive capacity of such response models. To enrich the currently available experimental database, six pure OOP tests on URM infills in RC frames were carried out at the Department of Structures for Engineering and Architecture of the University of Naples Federico II. Test specimens were built with the same materials and were different only for the thickness of the infill walls and for the number of their edges mortared to the confining elements of the RC frames. In this paper, the results of these experimental tests are briefly recalled. The main aim of this study is comparing the experimental response of test specimens with the prediction of mechanical models presented in the literature, in order to assess their effectiveness and contribute to the definition of a robust and reliable model for the evaluation of the OOP seismic response of URM infill walls.

Structural Capacity of Steel Plate Walls According to Various Infill Plate Details (다양한 웨브강판 상세에 따른 골조강판벽의 구조성능)

  • Park, Hong Gun;Choi, In Rak;Jeon, Sang Woo;Kim, Won Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.67-78
    • /
    • 2007
  • In this study, we performed an investigation on the variations in the structural capacity of steel plate walls with various infill plate details. Five three-story plate walls with thin web plates were tested. Parameters for the test specimens were the connection details between the moment frame and infill plates, such as weld and bolt connections, the location and length of weld connection, and coupling wall. Regardless of the details of infilled steel plate, the steel plate wall specimens showed excellent initial stiffness, strength, and energy dissipation capacity. However, the wall with bolt-connected infill plates showed slightly low deformation capacity. This result showed that for workability and cost efficiency,various wall details can be used in practice without causing a significant decrease in the structural capacity of steel plate walls. A method for making projections on strength and energy dissipation capacity of steel plate wall specimens with various details was developed.

A Comparison Study of Equivalent Strut Models for Seismic Performance Evaluation of Masonry-Infilled Frame (조적채움벽 골조의 내진성능평가를 위한 등가 스트럿 모델의 비교연구)

  • Yu, EunJong;Kim, MinJae;Jung, DaeGye
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.79-87
    • /
    • 2014
  • Masonry-infilled walls have been used in reinforced concrete(RC) frame structures as interior and exterior partition walls. Since these walls are considered as nonstructural elements, they were only considered as additional mass. However, infill walls tend to interact with the structure's overall strength, rigidity, and energy dissipation. Infill walls have been analyzed by finite element method or transposed as equivalent strut model. The equivalent strut model is a typical method to evaluate masonry-infilled structure to avoid the burden of complex finite element model. This study compares different strut models to identify their properties and applicability with regard to the characteristics of the structure and various material models.

The effect of infill walls on the fundamental period of steel frames by considering soil-structure interaction

  • Kianoosh Kiani;Sayed Mohammad Motovali Emami
    • Earthquakes and Structures
    • /
    • v.26 no.6
    • /
    • pp.417-431
    • /
    • 2024
  • The fundamental period of vibration is one of the most critical parameters in the analysis and design of structures, as it depends on the distribution of stiffness and mass within the structure. Therefore, building codes propose empirical equations based on the observed periods of actual buildings during seismic events and ambient vibration tests. However, despite the fact that infill walls increase the stiffness and mass of the structure, causing significant changes in the fundamental period, most of these equations do not account for the presence of infills walls in the structure. Typically, these equations are dependent on both the structural system type and building height. The different values between the empirical and analytical periods are due to the elimination of non-structural effects in the analytical methods. Therefore, the presence of non-structural elements, such as infill panels, should be carefully considered. Another critical factor influencing the fundamental period is the effect of Soil-Structure Interaction (SSI). Most seismic building design codes generally consider SSI to be beneficial to the structural system under seismic loading, as it increases the fundamental period and leads to higher damping of the system. Recent case studies and postseismic observations suggest that SSI can have detrimental effects, and neglecting its impact could lead to unsafe design, especially for structures located on soft soil. The current research focuses on investigating the effect of infill panels on the fundamental period of moment-resisting and eccentrically braced steel frames while considering the influence of soil-structure interaction. To achieve this, the effects of building height, infill wall stiffness, infill openings and soil structure interactions were studied using 3, 6, 9, 12, 15 and 18-story 3-D frames. These frames were modeled and analyzed using SeismoStruct software. The calculated values of the fundamental period were then compared with those obtained from the proposed equation in the seismic code. The results indicate that changing the number of stories and the soil type significantly affects the fundamental period of structures. Moreover, as the percentage of infill openings increases, the fundamental period of the structure increases almost linearly. Additionally, soil-structure interaction strongly affects the fundamental periods of structures, especially for more flexible soils. This effect is more pronounced when the infill wall stiffness is higher. In conclusion, new equations are proposed for predicting the fundamental periods of Moment Resisting Frame (MRF) and Eccentrically Braced Frame (EBF) buildings. These equations are functions of various parameters, including building height, modulus of elasticity, infill wall thickness, infill wall percentage, and soil types.

Damage assessment and performance-based seismic design of timber-steel hybrid shear wall systems

  • Li, Zheng;He, Minjuan;Li, Minghao;Lam, Frank
    • Earthquakes and Structures
    • /
    • v.7 no.1
    • /
    • pp.101-117
    • /
    • 2014
  • This paper presents a reliability-based analysis on seismic performance of timber-steel hybrid shear wall systems. Such system is composed of steel moment resisting frame and infill wood frame shear wall. The performance criteria of the hybrid system with respect to different seismic hazard levels were determined through a damage assessment process, and the effectiveness of the infill wood shear walls on improving the seismic performance of the hybrid systems was evaluated. Performance curves were obtained by considering different target non-exceedance probabilities, and design charts were further established as a function of seismic weight. Wall drift responses and shear forces in wood-steel bolted connections were used as performance criteria in establishing the performance curves to illustrate the proposed design procedure. It was found that the presence of the infill wood shear walls significantly reduced the non-performance probabilities of the hybrid wall systems. This study provides performance-based seismic evaluations on the timber-steel hybrid shear walls in support of future applications of such hybrid systems in multi-story buildings.