• Title/Summary/Keyword: Inference rule

Search Result 410, Processing Time 0.019 seconds

Development of a Rule-Based Inference Model for Human Sensibility Engineering System

  • Yang Sun-Mo;Ahn Beumjun;Seo Kwang-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.743-755
    • /
    • 2005
  • Human Sensibility Engineering System (HSES) has been applied to product development for customer's satisfaction based on ergonomic technology. The system is composed of three parts such as human sensibility analysis, inference mechanism, and presentation technologies. Inference mechanism translating human sensibility into design elements plays an important role in the HSES. In this paper, we propose a rule-based inference model for HSES. The rule-based inference model is composed of five rules and two inference approaches. Each of these rules reasons the design elements for selected human sensibility words with the decision variables from regression analysis in terms of forward inference. These results are evaluated by means of backward inference. By comparing the evaluation results, the inference model decides on product design elements which are closer to the customer's feeling and emotion. Finally, simulation results are tested statistically in order to ascertain the validity of the model.

Prediction of User Preferred Cosmetic Brand Based on Unified Fuzzy Rule Inference

  • Kim, Jin-Sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.271-275
    • /
    • 2005
  • In this research, we propose a Unified Fuzzy rule-based knowledge Inference Systems UFIS) to help the expert in cosmetic brand detection. Users' preferred cosmetic product detection is very important in the level of CRM. To this Purpose, many corporations trying to develop an efficient data mining tool. In this study, we develop a prototype fuzzy rule detection and inference system. The framework used in this development is mainly based on two different mechanisms such as fuzzy rule extraction and RDB (Relational DB)-based fuzzy rule inference. First, fuzzy clustering and fuzzy rule extraction deal with the presence of the knowledge in data base and its value is presented with a value between $0\∼1$. Second, RDB and SQL(Structured Query Language)-based fuzzy rule inference mechanism provide more flexibility in knowledge management than conventional non-fuzzy value-based KMS(Knowledge Management Systems)

  • PDF

Prediction of User's Preference by using Fuzzy Rule & RDB Inference: A Cosmetic Brand Selection

  • Kim, Jin-Sung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.353-359
    • /
    • 2005
  • In this research, we propose a Unified Fuzzy rule-based knowledge Inference Systems (UFIS) to help the expert in cosmetic brand detection. Users' preferred cosmetic product detection is very important in the level of CRM. To this purpose, many corporations trying to develop an efficient data mining tool. In this study, we develop a prototype fuzzy rule detection and inference system. The framework used in this development is mainly based on two different mechanisms such as fuzzy rule extraction and RDB (Relational DB)-based fuzzy rule inference. First, fuzzy clustering and fuzzy rule extraction deal with the presence of the knowledge in data base and its value is presented with a value between 0 -1. Second, RDB and SQL (Structured Query Language)-based fuzzy rule inference mechanism provide more flexibility in knowledge management than conventional non-fuzzy value-based KMS (Knowledge Management Systems).

Integration of OWL and SWRL Inference using Jess (Jess를 이용한 OWL과 SWRL의 통합추론에 관한 연구)

  • Lee Ki-Chul;Lee Jee-Hyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.875-880
    • /
    • 2005
  • OWL(Web Ontology Language) is the Ontology Standard Language and the a lot of Ontologies are being constructed in OWL. But the research on the extension of OWL is also progressing because of the limit of representation power of in OWL language. The W3C suggests the SWRL(Semantic Web Rule Language) based on the combination of OWL and RuleML(Rule Markup Language), which is improved in the representation of rule. Thus, both OWL and SWRL are used for developing ontologies. However, research on inference of ontologies written in both languages is just begun. These day, for the inference of ontologies written in both languages, ontologies and divided in to two parts. The part written in OWL and written in SWRL. For the inference of the part written in OWL, Racer, a DL based inference engine, is used and for the other part Jess, a rule-based engine, is used. In this paper, we will propose three methods for integrated inference of the OWL part and the SWRL part of ontologies using Jess and some tools for ontology inference : OWLJessKB and SWRL Factory

Development of a Backward Chaining Inference Methodology Considering Unknown Facts Based on Backtrack Technique (백트래킹 기법을 이용한 불확정성 하에서의 역방향추론 방법에 대한 연구)

  • Song, Yong-Uk;Shin, Hyun-Sik
    • Journal of Information Technology Services
    • /
    • v.9 no.3
    • /
    • pp.123-144
    • /
    • 2010
  • As knowledge becomes a critical success factor of companies nowadays, lots of rule-based systems have been and are being developed to support their activities. Large number of rule-based systems serve as Web sites to advise, or recommend their customers. They usually use a backward chaining inference algorithm based on backtrack to implement those interactive Web-enabled rule-based systems. However, when the users like customers are using these systems interactively, it happens frequently where the users do not know some of the answers for the questions from the rule-based systems. We are going to design a backward chaining inference methodology considering unknown facts based on backtrack technique. Firstly, we review exact and inexact reasoning. After that, we develop a backward chaining inference algorithm for exact reasoning based on backtrack, and then, extend the algorithm so that it can consider unknown facts and reduce its search space. The algorithm speeded-up inference and decreased interaction time with users by eliminating unnecessary questions and answers. We expect that the Web-enabled rule-based systems implemented by our methodology would improve users' satisfaction and make companies' competitiveness.

Effective Design of Inference Rule for Shape Classification

  • Kim, Yoon-Ho;Lee, Sang-Sock;Lee, Joo-Shin
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.417-422
    • /
    • 1998
  • This paper presents a method of object classification from dynamic image based on fuzzy inference algorithm which is suitable for low speed such as, conveyor, uninhabited transportation. At first, by using feature parameters of moving object, fuzzy if - then rule that can be able to adapt the wide variety of surroundings is developed. Secondly, implication function for fuzzy inference are compared with respect the proposed algorithm. Simulation results are presented to testify the performance and applicability of the proposed system.

  • PDF

Rule-based Named Entity (NE) Recognition from Speech (음성 자료에 대한 규칙 기반 Named Entity 인식)

  • Kim Ji-Hwan
    • MALSORI
    • /
    • no.58
    • /
    • pp.45-66
    • /
    • 2006
  • In this paper, a rule-based (transformation-based) NE recognition system is proposed. This system uses Brill's rule inference approach. The performance of the rule-based system and IdentiFinder, one of most successful stochastic systems, are compared. In the baseline case (no punctuation and no capitalisation), both systems show almost equal performance. They also have similar performance in the case of additional information such as punctuation, capitalisation and name lists. The performances of both systems degrade linearly with the number of speech recognition errors, and their rates of degradation are almost equal. These results show that automatic rule inference is a viable alternative to the HMM-based approach to NE recognition, but it retains the advantages of a rule-based approach.

  • PDF

Development of Forward chaining inference engine SMART-F using Rete Algorithm in the Semantic Web (차세대 웹 환경에서의 Rete Algorithm을 이용한 정방향 추론엔진 SMART - F 개발)

  • Jeong, Kyun-Beom;Hong, June-Seok;Kim, Woo-Ju;Lee, Myung-Jin;Park, Ji-Hyoung;Song, Yong-Uk
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.3
    • /
    • pp.17-29
    • /
    • 2007
  • Inference engine that performs the brain of software agent in next generation's web with various standards based on standard language of the web, XML has to understand SWRL (Semantic Web Rule Language) that is a language to express the rule in the Semantic Web. In this research, we want to develop a forward inference engine, SMART-F (SeMantic web Agent Reasoning Tools-Forward chaining inference engine) that uses SWRL as a rule express method, and OWL as a fact express method. In the traditional inference field, the Rete algorithm that improves effectiveness of forward rule inference by converting if-then rules to network structure is often used for forward inference. To apply this to the Semantic Web, we analyze the required functions for the SWRL-based forward inference, and design the forward inference algorithm that reflects required functions of next generation's Semantic Web deducted by Rete algorithm. And then, to secure each platform's independence and portability in the ubiquitous environment and overcome the gap of performance, we developed management tool of fact and rule base and forward inference engine. This is compatible with fact and rule base of SMART-B that was developed. So, this maximizes a practical use of knowledge in the next generation's Web environment.

  • PDF

Development of an SWRL-based Backward Chaining Inference Engine SMART-B for the Next Generation Web (차세대 웹을 위한 SWRL 기반 역방향 추론엔진 SMART-B의 개발)

  • Song Yong-Uk;Hong June-Seok;Kim Woo-Ju;Lee Sung-Kyu;Youn Suk-Hee
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.2
    • /
    • pp.67-81
    • /
    • 2006
  • While the existing Web focuses on the interface with human users based on HTML, the next generation Web will focus on the interaction among software agents by using XML and XML-based standards and technologies. The inference engine, which will serve as brains of software agents in the next generation Web, should thoroughly understand the Semantic Web, the standard language of the next generation Web. As abasis for the service, the W3C (World Wide Web Consortium) has recommended SWRL (Semantic Web Rule Language) which had been made by compounding OWL (Web Ontology Language) and RuleML (Rule Markup Language). In this research, we develop a backward chaining inference engine SMART-B (SeMantic web Agent Reasoning Tools -Backward chaining inference engine), which uses SWRL and OWL to represent rules and facts respectively. We analyze the requirements for the SWRL-based backward chaining inference and design analgorithm for the backward chaining inference which reflects the traditional backward chaining inference algorithm and the requirements of the next generation Semantic Web. We also implement the backward chaining inference engine and the administrative tools for fact and rule bases into Java components to insure the independence and portability among different platforms under the environment of Ubiquitous Computing.

  • PDF

A Construction of Fuzzy Inference Network based on Neural Logic Network and its Search Strategy

  • Lee, Mal-rey
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2000.11a
    • /
    • pp.375-389
    • /
    • 2000
  • Fuzzy logic ignores some information in the reasoning process. Neural networks are powerful tools for the pattern processing, but, not appropriate for the logical reasoning. To model human knowledge, besides pattern processing capability, the logical reasoning capability is equally important. Another new neural network called neural logic network is able to do the logical reasoning. Because the fuzzy inference is a fuzzy logical reasoning, we construct fuzzy inference network based on the neural logic network, extending the existing rule- inference. network. And the traditional propagation rule is modified. For the search strategies to find out the belief value of a conclusion in the fuzzy inference network, we conduct a simulation to evaluate the search costs for searching sequentially and searching by means of search priorities.

  • PDF