• Title/Summary/Keyword: Inference function

Search Result 450, Processing Time 0.024 seconds

Independence tests using coin package in R (coin 패키지를 이용한 독립성 검정)

  • Kim, Jinheum;Lee, Jung-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.5
    • /
    • pp.1039-1055
    • /
    • 2014
  • The distribution of a test statistic under a null hypothesis depends on the unknown distribution of the data and thus is unknown as well. Conditional tests replace the unknown null distribution by the conditional null distribution, that is, the distribution of the test statistic given the observed data. This approach is known as permutation tests and was developed by Fisher (Fisher, 1935). Theoretical framework for permutation tests was given by Strasser and Weber(1999). The coin package developed by Hothon et al. (2006, 2008) implements a unified approach for conditional inference via the generic independence test. Because convenient functions for the most prominent problems are available, users will not have to use the extremely flexible procedure. In this article we briefly review the underlying theory from Strasser and Weber (1999) and explain how to transform the data to perform the generic function independence test. Finally it was illustrated with a few real data sets.

Design of Object-Active-Knowledge(OAK) Model for Postal Business (객체-능동-지식 기반 우편 업무 모델 설계)

  • Lee, Jae-Ho;Sin, Pan-Seop;Im, Hae-Cheol;Hwang, Jae-Gak;U, Dong-Jin;Kim, Hye-Gyu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.8
    • /
    • pp.1907-1920
    • /
    • 1997
  • In this paper, we present integrated model of postal business that would be newly organized. The integrated model is developed through four phase. First, postal business is analyzed by three parts;collection, transportation and delivery. Second, the modeling criteria are developed that will be used for designing integrated postal business model. Third, object-oriented concepts are used by the steps of postal business modeling criteria captured. Finally, methods applied to developed model are grouped according to their function. Also, active-based mechanisms such as trigger and constraints are developed, and knowledge-based mechanisms such as inference are developed. These selected methods and attributes are encapsulated into objects. These constitute an object-active-knowledge based database model. Finally, Operational Scenario and Service Scenario are composed for real application according to proposed O-A-K model.

  • PDF

A Study on the Knowledge Organizing System of Research Papers Based on Semantic Relation of the Knowledge Structure (연구문헌의 지식구조를 반영하는 의미기반의 지식조직체계에 관한 연구)

  • Ko, Young-Man;Song, In-Seok
    • Journal of the Korean Society for information Management
    • /
    • v.28 no.1
    • /
    • pp.145-170
    • /
    • 2011
  • The purpose of this paper is to suggest a pilot model of knowledge organizing system which reflects the knowledge structure of research papers, using a case analysis on the "Korean Research Memory" of the National Research Foundation of Korea. In this paper, knowledge structure of the research papers in humanities and social science is described and the function of the "Korean Research Memory" for scholarly sense-making is analysed. In order to suggest the pilot model of the knowledge organizing system, the study also analysed the relation between indexed keyword and knowledge structure of research papers in the Korean Research Memory. As a result, this paper suggests 24 axioms and 11 inference rules for an ontology based on semantic relation of the knowledge structure.

Fingerprint Identification Algorithm using Pixel Direction Factor in Blocks (블록별 화소방향성분을 이용한 지문의 동일성 판별 알고리즘)

  • Cho Nam-Hyung;Lee Joo-Shin
    • The KIPS Transactions:PartB
    • /
    • v.12B no.2 s.98
    • /
    • pp.123-130
    • /
    • 2005
  • In this paper, fingerprint identification algorithm using pixel direction factor in blocks is proposed to minimize false acceptance ratio and to apply security system. The proposed algorithm is that a fingerprint image is divided by 16 blocks, then feature parameters which have direct factors of $0^{\circ},\;45^{\circ},\;90^{\circ}\;and\;135^{\circ}$ is extracted for each block. Membership function of a reference fingerprint and an input fingerprint for the extracted parameters is calculated, then identification of two fingerprint is distinguished using fuzzy inference. False acceptance ratio is evaluated about different fingerprints of In kinds regardless of sex and shape which are obtained from adults, and false rejection ratio is evaluated about fingerprints which are obtained by adding fingerprints of 10 kinds on different fingerprints of 100 kinds. The experiment results is that false acceptance ratio is average $0.34\%$ about experiment of 4,950 times, and false rejection ratio is average $3.7\%$ about experiment of 1,000 times. The proposed algerian is excellent for recognition rate and security.

An Extended Generative Feature Learning Algorithm for Image Recognition

  • Wang, Bin;Li, Chuanjiang;Zhang, Qian;Huang, Jifeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.3984-4005
    • /
    • 2017
  • Image recognition has become an increasingly important topic for its wide application. It is highly challenging when facing to large-scale database with large variance. The recognition systems rely on a key component, i.e. the low-level feature or the learned mid-level feature. The recognition performance can be potentially improved if the data distribution information is exploited using a more sophisticated way, which usually a function over hidden variable, model parameter and observed data. These methods are called generative score space. In this paper, we propose a discriminative extension for the existing generative score space methods, which exploits class label when deriving score functions for image recognition task. Specifically, we first extend the regular generative models to class conditional models over both observed variable and class label. Then, we derive the mid-level feature mapping from the extended models. At last, the derived feature mapping is embedded into a discriminative classifier for image recognition. The advantages of our proposed approach are two folds. First, the resulted methods take simple and intuitive forms which are weighted versions of existing methods, benefitting from the Bayesian inference of class label. Second, the probabilistic generative modeling allows us to exploit hidden information and is well adapt to data distribution. To validate the effectiveness of the proposed method, we cooperate our discriminative extension with three generative models for image recognition task. The experimental results validate the effectiveness of our proposed approach.

Learning T.P.O Inference Model of Fashion Outfit Using LDAM Loss in Class Imbalance (LDAM 손실 함수를 활용한 클래스 불균형 상황에서의 옷차림 T.P.O 추론 모델 학습)

  • Park, Jonghyuk
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.3
    • /
    • pp.17-25
    • /
    • 2021
  • When a person wears clothing, it is important to configure an outfit appropriate to the intended occasion. Therefore, T.P.O(Time, Place, Occasion) of the outfit is considered in various fashion recommendation systems based on artificial intelligence. However, there are few studies that directly infer the T.P.O from outfit images, as the nature of the problem causes multi-label and class imbalance problems, which makes model training challenging. Therefore, in this study, we propose a model that can infer the T.P.O of outfit images by employing a label-distribution-aware margin(LDAM) loss function. Datasets for the model training and evaluation were collected from fashion shopping malls. As a result of measuring performance, it was confirmed that the proposed model showed balanced performance in all T.P.O classes compared to baselines.

Penalized variable selection in mean-variance accelerated failure time models (평균-분산 가속화 실패시간 모형에서 벌점화 변수선택)

  • Kwon, Ji Hoon;Ha, Il Do
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.411-425
    • /
    • 2021
  • Accelerated failure time (AFT) model represents a linear relationship between the log-survival time and covariates. We are interested in the inference of covariate's effect affecting the variation of survival times in the AFT model. Thus, we need to model the variance as well as the mean of survival times. We call the resulting model mean and variance AFT (MV-AFT) model. In this paper, we propose a variable selection procedure of regression parameters of mean and variance in MV-AFT model using penalized likelihood function. For the variable selection, we study four penalty functions, i.e. least absolute shrinkage and selection operator (LASSO), adaptive lasso (ALASSO), smoothly clipped absolute deviation (SCAD) and hierarchical likelihood (HL). With this procedure we can select important covariates and estimate the regression parameters at the same time. The performance of the proposed method is evaluated using simulation studies. The proposed method is illustrated with a clinical example dataset.

Slope stability prediction using ANFIS models optimized with metaheuristic science

  • Gu, Yu-tian;Xu, Yong-xuan;Moayedi, Hossein;Zhao, Jian-wei;Le, Binh Nguyen
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.339-352
    • /
    • 2022
  • Studying slope stability is an important branch of civil engineering. In this way, engineers have employed machine learning models, due to their high efficiency in complex calculations. This paper examines the robustness of various novel optimization schemes, namely equilibrium optimizer (EO), Harris hawks optimization (HHO), water cycle algorithm (WCA), biogeography-based optimization (BBO), dragonfly algorithm (DA), grey wolf optimization (GWO), and teaching learning-based optimization (TLBO) for enhancing the performance of adaptive neuro-fuzzy inference system (ANFIS) in slope stability prediction. The hybrid models estimate the factor of safety (FS) of a cohesive soil-footing system. The role of these algorithms lies in finding the optimal parameters of the membership function in the fuzzy system. By examining the convergence proceeding of the proposed hybrids, the best population sizes are selected, and the corresponding results are compared to the typical ANFIS. Accuracy assessments via root mean square error, mean absolute error, mean absolute percentage error, and Pearson correlation coefficient showed that all models can reliably understand and reproduce the FS behavior. Moreover, applying the WCA, EO, GWO, and TLBO resulted in reducing both learning and prediction error of the ANFIS. Also, an efficiency comparison demonstrated the WCA-ANFIS as the most accurate hybrid, while the GWO-ANFIS was the fastest promising model. Overall, the findings of this research professed the suitability of improved intelligent models for practical slope stability evaluations.

In-depth exploration of machine learning algorithms for predicting sidewall displacement in underground caverns

  • Hanan Samadi;Abed Alanazi;Sabih Hashim Muhodir;Shtwai Alsubai;Abdullah Alqahtani;Mehrez Marzougui
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.307-321
    • /
    • 2024
  • This paper delves into the critical assessment of predicting sidewall displacement in underground caverns through the application of nine distinct machine learning techniques. The accurate prediction of sidewall displacement is essential for ensuring the structural safety and stability of underground caverns, which are prone to various geological challenges. The dataset utilized in this study comprises a total of 310 data points, each containing 13 relevant parameters extracted from 10 underground cavern projects located in Iran and other regions. To facilitate a comprehensive evaluation, the dataset is evenly divided into training and testing subset. The study employs a diverse array of machine learning models, including recurrent neural network, back-propagation neural network, K-nearest neighbors, normalized and ordinary radial basis function, support vector machine, weight estimation, feed-forward stepwise regression, and fuzzy inference system. These models are leveraged to develop predictive models that can accurately forecast sidewall displacement in underground caverns. The training phase involves utilizing 80% of the dataset (248 data points) to train the models, while the remaining 20% (62 data points) are used for testing and validation purposes. The findings of the study highlight the back-propagation neural network (BPNN) model as the most effective in providing accurate predictions. The BPNN model demonstrates a remarkably high correlation coefficient (R2 = 0.99) and a low error rate (RMSE = 4.27E-05), indicating its superior performance in predicting sidewall displacement in underground caverns. This research contributes valuable insights into the application of machine learning techniques for enhancing the safety and stability of underground structures.

Integration of WFST Language Model in Pre-trained Korean E2E ASR Model

  • Junseok Oh;Eunsoo Cho;Ji-Hwan Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1692-1705
    • /
    • 2024
  • In this paper, we present a method that integrates a Grammar Transducer as an external language model to enhance the accuracy of the pre-trained Korean End-to-end (E2E) Automatic Speech Recognition (ASR) model. The E2E ASR model utilizes the Connectionist Temporal Classification (CTC) loss function to derive hypothesis sentences from input audio. However, this method reveals a limitation inherent in the CTC approach, as it fails to capture language information from transcript data directly. To overcome this limitation, we propose a fusion approach that combines a clause-level n-gram language model, transformed into a Weighted Finite-State Transducer (WFST), with the E2E ASR model. This approach enhances the model's accuracy and allows for domain adaptation using just additional text data, avoiding the need for further intensive training of the extensive pre-trained ASR model. This is particularly advantageous for Korean, characterized as a low-resource language, which confronts a significant challenge due to limited resources of speech data and available ASR models. Initially, we validate the efficacy of training the n-gram model at the clause-level by contrasting its inference accuracy with that of the E2E ASR model when merged with language models trained on smaller lexical units. We then demonstrate that our approach achieves enhanced domain adaptation accuracy compared to Shallow Fusion, a previously devised method for merging an external language model with an E2E ASR model without necessitating additional training.