• Title/Summary/Keyword: Inference algorithm

Search Result 747, Processing Time 0.026 seconds

Error Correction of Real-time Situation Recognition using Smart Device (스마트 기기를 이용한 실시간 상황인식의 오차 보정)

  • Kim, Tae Ho;Suh, Dong Hyeok;Yoon, Shin Sook;Ryu, KeunHo
    • Journal of Digital Contents Society
    • /
    • v.19 no.9
    • /
    • pp.1779-1785
    • /
    • 2018
  • In this paper, we propose an error correction method to improve the accuracy of human activity recognition using sensor event data obtained by smart devices such as wearable and smartphone. In the context awareness through the smart device, errors inevitably occur in sensing the necessary context information due to the characteristics of the device, which degrades the prediction performance. In order to solve this problem, we apply Kalman filter's error correction algorithm to compensate the signal values obtained from 3-axis acceleration sensor of smart device. As a result, it was possible to effectively eliminate the error generated in the process of the data which is detected and reported by the 3-axis acceleration sensor constituting the time series data through the Kalman filter. It is expected that this research will improve the performance of the real-time context-aware system to be developed in the future.

Air Threat Evaluation System using Fuzzy-Bayesian Network based on Information Fusion (정보 융합 기반 퍼지-베이지안 네트워크 공중 위협평가 방법)

  • Yun, Jongmin;Choi, Bomin;Han, Myung-Mook;Kim, Su-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.13 no.5
    • /
    • pp.21-31
    • /
    • 2012
  • Threat Evaluation(TE) which has air intelligence attained by identifying friend or foe evaluates the target's threat degree, so it provides information to Weapon Assignment(WA) step. Most of TE data are passed by sensor measured values, but existing techniques(fuzzy, bayesian network, and so on) have many weaknesses that erroneous linkages and missing data may fall into confusion in decision making. Therefore we need to efficient Threat Evaluation system that can refine various sensor data's linkages and calculate reliable threat values under unpredictable war situations. In this paper, we suggest new threat evaluation system based on information fusion JDL model, and it is principle that combine fuzzy which is favorable to refine ambiguous relationships with bayesian network useful to inference battled situation having insufficient evidence and to use learning algorithm. Finally, the system's performance by getting threat evaluation on an air defense scenario is presented.

Bayesian Inference for Autoregressive Models with Skewed Exponential Power Errors (비대칭 지수멱 오차를 가지는 자기회귀모형에서의 베이지안 추론)

  • Ryu, Hyunnam;Kim, Dal Ho
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.1039-1047
    • /
    • 2014
  • An autoregressive model with normal errors is a natural model that attempts to fit time series data. More flexible models that include normal distribution as a special case are necessary because they can cover normality to non-normality models. The skewed exponential power distribution is a possible candidate for autoregressive models errors that may have tails lighter(platykurtic) or heavier(leptokurtic) than normal and skewness; in addition, the use of skewed exponential power distribution can reduce the influence of outliers and consequently increases the robustness of the analysis. We use SIR algorithm and grid method for an efficient Bayesian estimation.

Static Single Assignment Form for Java Bytecodes in CTOC (CTOC에서 자바 바이트코드를 위한 정적 단일 배정 형태)

  • Kim, Ki-Tae;Yoo, Weon-Hee
    • The KIPS Transactions:PartD
    • /
    • v.13D no.7 s.110
    • /
    • pp.939-946
    • /
    • 2006
  • Although the Java bytecode has numerous advantages, there are also shortcomings such as slow execution speed and difficulty in analysis. In order to overcome such disadvantages, bytecode analysis and optimization must be performed. We implements CTOC for optimized codes. An extended CFG must be first created in order to analyze and optimize a bytecode. Due to unique bytecode properties, the existing CFG must be expanded according to the bytecode. Furthermore, the CFG must be converted into SSA Form for a static analysis, for which calculation is required for various information such as the dominate relation, dominator tree, immediate dominator, $\phi$-function, rename, and dominance frontier. This paper describes the algorithm and the process for converting the existing CFG into the SSA From. The graph that incorporates the SSA Form is later used for type inference and optimization.

Generalized Linear Mixed Model for Multivariate Multilevel Binomial Data (다변량 다수준 이항자료에 대한 일반화선형혼합모형)

  • Lim, Hwa-Kyung;Song, Seuck-Heun;Song, Ju-Won;Cheon, Soo-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.6
    • /
    • pp.923-932
    • /
    • 2008
  • We are likely to face complex multivariate data which can be characterized by having a non-trivial correlation structure. For instance, omitted covariates may simultaneously affect more than one count in clustered data; hence, the modeling of the correlation structure is important for the efficiency of the estimator and the computation of correct standard errors, i.e., valid inference. A standard way to insert dependence among counts is to assume that they share some common unobservable variables. For this assumption, we fitted correlated random effect models considering multilevel model. Estimation was carried out by adopting the semiparametric approach through a finite mixture EM algorithm without parametric assumptions upon the random coefficients distribution.

A study on Robust Topology for the Resilient Ontology-based Dynamic Multicast Routing Protocol (노드의 복원력이 있는 온톨로지 기반의 동적 멀티캐스트 라우팅 연구)

  • Kim, Sun-Guk;Doo, Kyung-Min;Chi, Sam-Hyun;Lee, Kang-Whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.188-194
    • /
    • 2007
  • We propose a new ad hoc multicast routing protocol for based on the ontology scheme called inference network. Ontology knowledge-based is one of the structure of context-aware. We will have developed an algorithm that will design multi-hierarchy Layered networks to simulate a desired system.

  • PDF

Experimental Validation of Crack Growth Prognosis under Variable Amplitude Loads (변동진폭하중 하에서 균열성장 예측의 실험적 검증)

  • Leem, Sang-Hyuck;An, Dawn;Lim, Che-Kyu;Hwang, Woongki;Choi, Joo-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.267-275
    • /
    • 2012
  • In this study, crack growth in a center-cracked plate is predicted under mode I variable amplitude loading, and the result is validated by experiment. Huang's model is employed to describe crack growth with acceleration and retardation due to the variable loading effect. Experiment is conducted with Al6016-T6 plate, in which the load is applied, and crack length is measured periodically. Particle Filter algorithm, which is based on the Bayesian approach, is used to estimate model parameters from the experimental data, and predict the crack growth of the future in the probabilistic way. The prediction is validated by the run-to-failure results, from which it is observed that the method predicts well the unique behavior of crack retardation and the more data are used, the closer prediction we get to the actual run-to-failure data.

Prediction of Transfer Lengths in Pretensioned Concrete Members Using Neuro-Fuzzy System (뉴로-퍼지 시스템을 이용한 프리텐션 콘크리트 부재의 전달길이 예측)

  • Kim, Minsu;Han, Sun-Jin;Cho, Hae-Chang;Oh, Jae-Yuel;Kim, Kang Su
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.723-731
    • /
    • 2016
  • In pretensioned concrete members, a certain bond length from the end of the member is required to secure the effective prestress in the strands, which is defined as the transfer length. However, due to the complex bond mechanism between strands and concrete, most transfer length models based on the deterministic approach have uncertainties and do not provide accurate estimations. Therefore, in this study, Adaptive Neuro-Fuzzy Inference System (ANFIS), a Neuro-Fuzzy System, is introduced to reduce the uncertainties and to estimate the transfer length more accurately in pretensioned concrete member. A total of 253 transfer length test results have been collected from literatures to train ANFIS, and the trained ANFIS algorithm estimated the transfer length very accurately. In addition, a design equation was proposed to calculate the transfer length based on parametric studies and dimensional analyses. Consequently, the proposed equation provided accurate results on the transfer length which are comparable to the ANFIS analysis results.

Design of Nonlinear Model Using Type-2 Fuzzy Logic System by Means of C-Means Clustering (C-Means 클러스터링 기반의 Type-2 퍼지 논리 시스템을 이용한 비선형 모델 설계)

  • Baek, Jin-Yeol;Lee, Young-Il;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.842-848
    • /
    • 2008
  • This paper deal with uncertainty problem by using Type-2 fuzzy logic set for nonlinear system modeling. We design Type-2 fuzzy logic system in which the antecedent and the consequent part of rules are given as Type-2 fuzzy set and also analyze the performance of the ensuing nonlinear model with uncertainty. Here, the apexes of the antecedent membership functions of rules are decided by C-means clustering algorithm and the apexes of the consequent membership functions of rules are learned by using back-propagation based on gradient decent method. Also, the parameters related to the fuzzy model are optimized by means of particle swarm optimization. The proposed model is demonstrated with the aid of two representative numerical examples, such as mathematical synthetic data set and Mackey-Glass time series data set and also we discuss the approximation as well as generalization abilities for the model.

Analysis and Detection Method for Line-shaped Echoes using Support Vector Machine (Support Vector Machine을 이용한 선에코 특성 분석 및 탐지 방법)

  • Lee, Hansoo;Kim, Eun Kyeong;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.665-670
    • /
    • 2014
  • A SVM is a kind of binary classifier in order to find optimal hyperplane which separates training data into two groups. Due to its remarkable performance, the SVM is applied in various fields such as inductive inference, binary classification or making predictions. Also it is a representative black box model; there are plenty of actively discussed researches about analyzing trained SVM classifier. This paper conducts a study on a method that is automatically detecting the line-shaped echoes, sun strobe echo and radial interference echo, using the SVM algorithm because the line-shaped echoes appear relatively often and disturb weather forecasting process. Using a spatial clustering method and corrected reflectivity data in the weather radar, the training data is made up with mean reflectivity, size, appearance, centroid altitude and so forth. With actual occurrence cases of the line-shaped echoes, the trained SVM classifier is verified, and analyzed its characteristics using the decision tree method.