• 제목/요약/키워드: Inference System

검색결과 1,627건 처리시간 0.03초

온톨로지 방법론을 이용한 지역지리 지식으로서 도시이미지의 표현 (Representing City Image as Regional Geographic Knowledge: Ontology Modeling Approach)

  • 홍일영
    • 한국지리정보학회지
    • /
    • 제13권2호
    • /
    • pp.74-93
    • /
    • 2010
  • 최근 네비게이션 시스템이 대중화되면서 랜드마크 연구는 도시지역 이동을 위한 인지적 시스템 개발에 중요한 연구주제가 되고 있다. 지역 커뮤니티에게 있어서 랜드마크로 구성된 도시이미지는 지역 네비게이션에 있어서 장소인식을 위한 참조프레임 역할을 담당한다. 일반적으로 네비게이션은 새로운 지역을 이동하는 탐험(Exploration)과 친숙한 지역을 이동하는 네비게이션으로 구분할 수 있다. 후자의 경우, 도시이미지는 지역 커뮤니티에게 있어서 장소인식에 있어서 핵심적인 역할을 담당한다. 커뮤니티의 장소인식은 시스템적으로 연결된 장소들로 구성된 도시이미지에 기반을 두어 이루어지는 지식기반의 추론의 과정이다. 본 연구에서 도시이미지의 구조는 계층적 지식으로 간주하여 커뮤니티를 위한 지역이동을 위한 도메인 온톨로지로 표현하였다. 커뮤니티에게서 수집된 도시이미지는 커뮤니티의 인지정도에 따라 엥커(anchor), 디스턴트(distant)와 로컬(local)분류하였다. 온톨로지 모델링 기법을 이용한 도시이미지의 표현은 지역 커뮤니티의 지리적 지식으로 명시화하고 도시지역 안내를 위한 에이전트를 위해 재사용이 가능한 지식으로서 유용한 의미를 갖는다.

(2D)2PCA 알고리즘을 이용한 pRBFNNs 패턴분류기 기반 얼굴인식 시스템 설계 (Design of pRBFNNs Pattern Classifier-based Face Recognition System Using 2-Directional 2-Dimensional PCA Algorithm)

  • 오성권;진용탁
    • 전자공학회논문지
    • /
    • 제51권1호
    • /
    • pp.195-201
    • /
    • 2014
  • 본 연구에서는 $(2D)^2PCA$ 알고리즘을 이용한 pRBFNNs 패턴분류기 기반 얼굴인식 시스템을 설계하였다. 기존의 1차원 PCA는 행과 열의 곱으로 표현한 이미지의 차원을 축소한다. 하지만 $(2D)^2PCA$(2-Directional 2-Dimensional Principal Components Analysis)는 이미지의 행과 열에서 각각 차원축소를 수행한다. 그 다음 제안된 지능형 패턴분류기로 축소된 이미지를 사용하여 성능을 평가한다. (pRBFNNs)로 성능 평가를 한다. 제안된 다항식 기반 RBFNNs은 조건부, 결론부, 추론부 세가지의 기능적 모듈로 구성되어 있고 조건는 퍼지 클러스터링을 사용하여 입력 공간을 분할하고, 결론부는 RBFNNs의 연결가중치로 일차 선형식으로 표현한다. 또한 차분진화 알고리즘을 이용하여 제안된 분류기의 파라미터, 즉 입력의 수, 퍼지 클러스터링의 퍼지화 계수를 최적화 한다. 얼굴인식에 많이 사용되는 Yale과 AT&T를 사용하여 인식률을 평가하였다. 실험 평가를 위해 IC&CI 연구실 데이터를 추가하여 실험하였다.

대형구조물의 진동 감소를 위한 슬라이딩 모드 퍼지 제어기의 설계 (Design of Sliding Mode Fuzzy Controller for Vibration Reduction of Large Structures)

  • 윤정방;김상범
    • 한국지진공학회논문집
    • /
    • 제3권3호
    • /
    • pp.63-74
    • /
    • 1999
  • 대형구조물의 진동감소를 위한 슬라이딩 모드 퍼지 제어기(Sliding Mode Fuzzy Control SMFC)에 대하여 연구하였다 본 제어기에 사용된 퍼지 추론기의 규칙은 비선형 제어기법의 하나인 슬라이딩 모드 제어기를 기반으로 하여 구성되었다 그결과 제어기의 퍼지성은 제어시스템을 시스템 계수의 불확실성과 구조물에 작용되는 외부하중의 불확실성에 대하여 강인한 성질은 갖게 하였으며 제어 규칙의 비선형성으로 인하여 제어기는 선형제어기에 비하여 보다 효율적인 되었다 복잡한 수학 해석에 기반한 종래의 제어기법에 비하여 퍼지 이론에 기반한 본 제어기법은 제어기의 설계절차가 매우 편리하다는 장점을 갖게 된다. 제안된 제어기법의 검증을 위하여 미국 토목학회 산하 구조제어위원회(ASCE Committee on Structural Control)에서 주도한 벤치마크 문제에 대하여 적용시켜 보았다 본 연구의 제어결과를 다른 연구자들에 의하여 발표된 {{{{ ETA _mixed _2$\infty$ }}, optimal polynomial control neural networks control 슬라이딩 모드 제어의 벤치마크 결과와 비교하였으며 그 결과 제안된 제어기법이 구조물의 진동을 매우 효율적으로 감소시키며 제어기의 설계절차가 쉽고 편리함을 확일 할 수 있었다.

  • PDF

유량과 수질을 연계한 실시간 인공지능 경보시스템 개발 (I) 유량-수질 예측모형의 적용 (A Development of Real Time Artificial Intelligence Warning System Linked Discharge and Water Quality (I) Application of Discharge-Water Quality Forecasting Model)

  • 연인성;안상진
    • 한국수자원학회논문집
    • /
    • 제38권7호
    • /
    • pp.565-574
    • /
    • 2005
  • 평창강 수질자동측정망 실시간 자료를 이용하여 강우시와 무강우시로 구분하여 분석하였다. 강우시에 측정된 TOC 자료는 무강우시 측정된 자료에 비해 평균값, 최대값, 표준편차가 크게 나타났으며, 강우시의 DO 자료는 무강우시에 측정된 자료보다 낮아 유량이 수질변화에 영향을 미치는 것으로 분석되었다. 신경망 모형과 뉴로-퍼지 모형으로 수질예측 모형을 구성하고, 적용하였다. LMNN, MDNN, ANFIS 모형은 TOC 모의에서 DO 예측에서는 LMNN, MDNN 모형이 ANFIS 모형보다 좋은 결과를 보였으며, 정량적 자료에 정성적 자료인 시간을 학습한 MDNN 모형이 가장 작은 오차를 보였다. 하천의 실시간적 관리를 위해서는 유량과 수질의 측정이 동일한 지점에서 동시간적으로 이루어져야 보다 효과적이다. 그러나 수질자동측정망 지점과 T/M 수위관측소가 원거리에 위치한 경우들이 있으며, 평창강 수질자동측정망 지점이 그 중 하나이다. 연구에서는 평창강 수질자동측정망 지점의 유출예측을 위한 신경망 모형을 구성하여 수질예측 모형과 연계하였으며, 연계된 모형은 수질예측에 개선된 결과를 보였다.

건전성 예측을 위한 모델변수 추정방법의 비교 (A Comparison Study of Model Parameter Estimation Methods for Prognostics)

  • 안다운;김남호;최주호
    • 한국전산구조공학회논문집
    • /
    • 제25권4호
    • /
    • pp.355-362
    • /
    • 2012
  • 건전성 예측은 구조물의 고장이 발생될 때까지 남은 시간인 잔존유효수명을 예측하는 것으로, 이는 안전 및 정비 계획과 직접적으로 연관되기 때문에 매우 중요하다. 건전성 예측방법에는 물리모델 기반방법, 데이터 기반방법과 두 방법의 장점을 통합하는 방법이 있으며, 본 연구에서는 잔존수명 예측의 정확도가 모델변수 추정과 직접적으로 관련되는 물리모델 기반 건전성 예측에 초점을 맞춘다. 물리모델기반 건전성 예측에서는 모델변수 추정을 통해 시스템 상태의 장기 예측이 가능하지만, 대부분의 실제 구조물들의 상태모델은 여러 개의 모델변수를 포함함은 물론이고, 그 변수들이 서로 상관되어 있기 때문에 모델변수를 추정하는 일은 간단한 문제가 아니다. 본 연구에서는 물리모델 기반 건전성 예측을 위한 세 가지 변수 추정방법들의 차이를 논한다. 이 세 가지 방법들은 파티클 필터, 전반적인 베이지안 접근법, 그리고 순차적인 베이지안 접근법으로 모두 베이지안 추론이라는 하나의 이론적 바탕에 기반하지만, 샘플링 방법이나 갱신 절차 등에서 차이가 있다. 균열성장을 표현하는 Paris 모델의 변수 추정을 통해 세 가지 방법의 차이점이 논해지고, 건전성 예측 메트릭을 이용하여 정량적 차이를 표현한다. 파티클 필터방법이 건전성 예측 메트릭 측면에서 가장 높은 성능을 나타내었지만, 전반적인 베이지안 방법은 파티클 필터방법과 근소한 차이를 보이면서도 데이터가 집단으로 존재할 때에는 가장 효율적인 방법으로 나타났다.

최적 pRBFNNs 패턴분류기 기반 2차원 영상과 ASM 알고리즘을 이용한 얼굴인식 알고리즘 설계 (Design of Optimized pRBFNNs-based Face Recognition Algorithm Using Two-dimensional Image and ASM Algorithm)

  • 오성권;마창민;유성훈
    • 한국지능시스템학회논문지
    • /
    • 제21권6호
    • /
    • pp.749-754
    • /
    • 2011
  • 본 연구에서는 최적 pRBFNNs 패턴분류기 기반 2차원 영상과 ASM 알고리즘을 이용한 얼굴인식 시스템을 설계하고자 한다. 기존의 2차원 영상 기반 얼굴 인식 기법들은 인식하고자 하는 객체의 영상내의 위치, 크기 및 배경의 존재 유무에 따라 인식률이 영향을 받는 단점이 있으며, 본 연구에서는 이를 보완하기 위하여 관심 영역 내에서의 얼굴 영역 추출 및 특징 추출기법을 이용한 얼굴인식 방법을 소개한다. 본 연구에서는 CCD 카메라를 이용하여 영상을 획득하고 히스토그램 평활화를 이용하여 조명으로 왜곡된 영상정보를 개선한다. AdaBoost 알고리즘을 이용하여 얼굴영역을 검출하고 ASM을 통하여 얼굴 윤곽선 및 형상을 추출하여 개인 프로필을 구성한 후 PCA 알고리즘을 사용하여 고차원 얼굴데이터의 차원을 축소한다. 그리고 인식 모듈로서 pRBFNNs 패턴분류기를 제안한다. 제안된 다항식 기반 RBFNNs은 조건부, 결론부, 추론부 세 가지의 기능적 모듈로 구성되어 있고 조건부는 퍼지 클러스터링을 사용하여 입력 공간을 분할하고, 결론부는 분할된 로컬 영역을 다항식 함수로 표현한다. 또한 차분진화 알고리즘을 이용하여 제안된 분류기의 파라미터, 즉, 학습률, 모멘텀 계수, 퍼지 클러스터링의 퍼지화 계수를 최적화한다. 제안된 다항식 기반 RBFNNs는 얼굴 인식을 위한 패턴분류기로서 직접 CCD 카메라로부터 입력받은 데이터를 영상 보정, 얼굴 검출 및 특징 추출 등과 같은 데이터 전 처리 과정을 포함하여 고차원 데이터로 이루어진 얼굴 영상에 대한 인식 성능을 확인한다.

다양한 OWL-DL 추론 엔진에서 대용량 ABox 추론에 대한 성능평가 (A Performance Analysis of Large ABox Reasoning in OWL-DL Reasoners)

  • 서은석;박영택
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권7호
    • /
    • pp.655-666
    • /
    • 2007
  • RacerPro, Pellet 등 지금까지의 전혈적인 추론 시스템들은 주로 Tableaux Algorithm 기반의 추론 시스템으로 Tableaux Algorithm의 특성상 대용량 ABox 추론에서 문제점을 나타낸다. 이를 해결하기 위한 연구로 Tableaux Algorithm 기반에 DBMS를 함께 사용한 영국 Manchester 대학의 Instance Store와 Disjunctive Datalog Approach를 사용한 독일 Karlsruhe 대학의 KAON2가 있다. 현재 추론 시스템들에 대한 벤치마크 실험은 대부분 Tableaux Algorithm 기반의 TBox 추론 위주이며 ABox 추론에 대한 평가는 거의 진행되지 않았다. 특히 최근 이슈로 부각된 (대용량 ABox 추론을 위한 추론 시스템)의 특성별 벤치마크 실험은 거의 보고되지 않았다. 이에 본 논문에서는 각 추론엔진들의 이론적 배경을 근간으로 전형적 추론엔진들과 최근 이슈에 따른 대용량 ABox론 위한 추론엔진들을 상호 비교를 통해 살펴보며 특히, 대용량 ABox 처리론 위한 추론엔진인 Manchester 대학의 Instance Store와 Karlsruhe 대학의 KAON2를 LUBM을 통하여 분석 평가함으로 사용자의 요구에 따른 대용량 ABox 추론엔진을 제시한다. 평가방법에서는 LUBM(Lehigh University BenchMark)에 대한 소개와 이를 이용한 벤치마크 실험 방법 및 평가 시스템에 대하여 소개한다. 본 논문은 결론을 통해 실험 결과와 각 추론엔진의 사용 Algorithm 특성을 기초로 다양한 환경에서의 대용량 ABox 처리에 적합한 추론엔진을 제시한다.

뇌기반 교육원리를 적용한 가정과 공감교육 프로그램 개발 (Development of Empathy Education Program Using Brain-Based Education Principles in Home Economics)

  • 이은진;최새은
    • 한국가정과교육학회지
    • /
    • 제33권2호
    • /
    • pp.153-172
    • /
    • 2021
  • 본 연구는 가정과교육에서의 뇌기반 교육원리를 적용한 공감교육 프로그램 개발을 목적으로 한다. 이를 위하여 ADDE(Analysis, Design, Development, Evaluation)의 절차에 따라 공감 및 뇌과학에 관련된 문헌 분석과 2015 개정 기술·가정 교육과정 및 교과서 3종을 분석하여 중학생 대상 가정과 공감교육 프로그램을 개발하고 전문가 평가를 실시하였다. 연구 결과 가정과교육에서의 공감교육을 위한 뇌기반 교육원리는 '모방을 통한 이해', '상상을 통한 추론', '경험을 통한 상호작용', '실천을 통한 내면화'라는 네 가지로 도출된다. 2015 개정 기술·가정 교육과정 및 교과서 분석 결과, 공감은 가정과의 교과역량인 관계형성능력을 기르는 요소로서 '자신', '타인', '공동체'에서의 관계 차원에서 공감 관련 내용요소들이 다루어졌다. 개발된 프로그램의 전문가 타당도 평가를 분석한 결과 전체 항목의 타당도 평균이 4.88, 타당도 지수(CVI)는 0.98로 프로그램이 타당한 것으로 나타났다. 본 연구를 통해 가정과교육에서의 공감교육의 가능성을 확인할 수 있었고, 현재 가정과교육에서는 뇌과학을 고려한 연구는 미흡한 실정인데 본 연구는 가정과교육에서의 공감교육을 '뇌과학'과 접목하여 새롭게 제시하였다는 점에서 의의가 있다.

연속파 레이다를 활용한 이진 신경망 기반 사람 식별 및 동작 분류 시스템 설계 및 구현 (Design and Implementation of BNN based Human Identification and Motion Classification System Using CW Radar)

  • 김경민;김성진;남궁호정;정윤호
    • 한국항행학회논문지
    • /
    • 제26권4호
    • /
    • pp.211-218
    • /
    • 2022
  • 연속파 레이다는 카메라나 라이다와 같은 센서에 비해서 안정성과 정확성이 보장된다는 장점이 있다. 또한 이진 신경망은 다른 딥러닝 기술에 비해서 메모리 사용량과 연산 복잡도를 크게 줄일 수 있는 특징이 있다. 따라서 본 논문에서는 연속파 레이다와 이진 신경망 기반 사람 식별 및 동작 분류 시스템을 제안한다. 연속파 레이다 센서를 통해 수신된 신호를 단시간 푸리에 변환함으로써 스펙트로그램을 생성한다. 이 스펙트로그램을 기반으로 레이다를 향해 사람이 다가오는지 감지하는 알고리즘을 제안한다. 더불어, 최적화된 이진 신경망 모델을 설계하여 사람 식별 90.0%, 동작 분류 98.3%의 우수한 정확도를 지원할 수 있음을 확인하였다. 이진 신경망 연산을 가속하기 위해 FPGA (field programmable gate array)를 이용하여 이진 신경망 연산에 대한 하드웨어 가속기를 설계하였다. 해당 가속기는 1,030개의 로직, 836개의 레지스터, 334.906 Kbit의 블록 메모리를 사용하여 구현되었고, 추론에서 결과 전송까지 총 연산 시간이 6 ms로 실시간 동작이 가능함을 확인하였다.

지식 간 상호참조적 네비게이션이 가능한 온톨로지 기반 프로세스 중심 지식지도 (Ontology-Based Process-Oriented Knowledge Map Enabling Referential Navigation between Knowledge)

  • 유기동
    • 지능정보연구
    • /
    • 제18권2호
    • /
    • pp.61-83
    • /
    • 2012
  • 지식지도는 관련된 지식의 현황을 네트워크 형식으로 보여주는 일종의 도식으로, 지식 간의 상호참조적 네비게이션 관계를 기초로 하는 지식 분류 및 저장 체계 역할을 한다. 이러한 이유로 인하여 지식 및 이들 지식이 또 다른 지식과 갖는 관계를 네트워크 형식으로 형식적이고 객관적으로 묘사하기 위한 온톨로지 기반 지식지도의 필요성이 대두되어왔다. 본 논문은 지식 간의 상호참조적 네비게이션이 가능한 온톨로지 기반 지식지도를 구현하기 위한 방법론을 제시한다. 제시된 방법론에 의해 구현되는 온톨로지 기반 지식지도는 지식 간의 상호참조적 네비게이션을 가능하게 할 뿐만 아니라 이러한 지식 간 네트워크 관계에 의해 추가적인 지식 간의 관계를 추론할 수 있다. 제시된 개념의 타당성을 검증하기 위하여 두 가지의 실제 비즈니스 프로세스를 기반으로 지식지도를 구현하였고, 구현된 지식지도에 나타나는 지식 간 네트워크 구성의 유효성을 검토하였다.