• 제목/요약/키워드: Infection structures

검색결과 159건 처리시간 0.022초

Changes in Endophyte Communities across the Different Plant Compartments in Response to the Rice Blast Infection

  • Mehwish Roy;Sravanthi Goud Burragoni;Junhyun Jeon
    • The Plant Pathology Journal
    • /
    • 제40권3호
    • /
    • pp.299-309
    • /
    • 2024
  • The rice blast disease, caused by the fungal pathogen, Magnaporthe oryzae (syn. Pyricularia oryzae), poses a significant threat to the global rice production. Understanding how this disease impacts the plant's microbial communities is crucial for gaining insights into host-pathogen interactions. In this study, we investigated the changes in communities of bacterial and fungal endophytes inhabiting different compartments in healthy and diseased plants. We found that both alpha and beta diversities of endophytic communities do not change significantly by the pathogen infection. Rather, the type of plant compartment appeared to be the main driver of endophytic community structures. Although the overall structure seemed to be consistent between healthy and diseased plants, our analysis of differentially abundant taxa revealed the specific bacterial and fungal operational taxonomic units that exhibited enrichment in the root and leaf compartments of infected plants. These findings suggest that endophyte communities are robust to the changes at the early stage of pathogen infection, and that some of endophytes enriched in infected plants might have roles in the defense against the pathogen.

Evaluation of porcine intestinal organoids as an in vitro model for mammalian orthoreovirus 3 infection

  • Se-A Lee;Hye Jeong Lee;Na-Yeon Gu;Yu-Ri Park;Eun-Ju Kim;Seok-Jin Kang;Bang-Hun Hyun;Dong-Kun Yang
    • Journal of Veterinary Science
    • /
    • 제24권4호
    • /
    • pp.53.1-53.12
    • /
    • 2023
  • Background: Mammalian orthoreovirus type 3 (MRV3), which is responsible for gastroenteritis in many mammalian species including pigs, has been isolated from piglets with severe diarrhea. However, the use of pig-derived cells as an infection model for swine-MRV3 has rarely been studied. Objectives: This study aims to establish porcine intestinal organoids (PIOs) and examine their susceptibility as an in vitro model for intestinal MRV3 infection. Methods: PIOs were isolated and established from the jejunum of a miniature pig. Established PIOs were characterized using polymerase chain reaction (PCR) and immunofluorescence assays (IFAs) to confirm the expression of small intestine-specific genes and proteins, such as Lgr5, LYZI, Mucin-2, ChgA, and Villin. The monolayered PIOs and three-dimensional (3D) PIOs, obtained through their distribution to expose the apical surface, were infected with MRV3 for 2 h, washed with Dulbecco's phosphate-buffered saline, and observed. Viral infection was confirmed using PCR and IFA. We performed quantitative real-time reverse transcription-PCR to assess changes in viral copy numbers and gene expressions linked to intestinal epithelial genes and antiviral activity. Results: The established PIOs have molecular characteristics of intestinal organoids. Infected PIOs showed delayed proliferation with disruption of structures. In addition, infection with MRV3 altered the gene expression linked to intestinal epithelial cells and antiviral activity, and these effects were observed in both 2D and 3D models. Furthermore, viral copy numbers in the supernatant of both models increased in a time-dependent manner. Conclusions: We suggest that PIOs can be an in vitro model to study the infection mechanism of MRV3 in detail, facilitating pharmaceutical development.

Suppression of Ripe Rot on 'Zesy002' Kiwifruit with Commercial Agrochemicals

  • Shin, Yong Ho;Ledesma, Magda;Whitman, Sonia;Tyson, Joy;Zange, Birgit;Kim, Ki Deok;Jeun, Yong Chull
    • The Plant Pathology Journal
    • /
    • 제37권4호
    • /
    • pp.347-355
    • /
    • 2021
  • Ripe rot caused by Botryosphaeria dothidea is one of the serious diseases of postharvest kiwifruit. In order to control ripe rot on Actinidia chinensis cultivar 'Zesy002', several commercial agrofungicides were selected by an antifungal test on an artificial medium. Furthermore, disease suppression by the selected fungicides was evaluated on the kiwifruit by inoculation with a conidial suspension of B. dothidea. On the artificial media containing boscalid + fludioxonil was shown to be the most effective antifungal activity. However, in the bio-test pyraclostrobin + boscalid and iminoctadinetris were the most effective agrochemicals on the fruit. On the other hand, the infection structures of B. dothidea on kiwifruit treated with pyraclostrobin + boscalid were observed with a fluorescent microscope. Most of the fungal conidia had not germinated on the kiwifruit treated with the agrochemicals whereas on the untreated fruit the fungal conidia had mostly germinated. Electron microscopy of the fine structures showed morphological changes to the conidia and branch of hyphae on the kiwifruit pre-treated with pyraclostrobin + boscalid, indicating its suppression effect on fungal growth. Based on this observation, it is suggested that ripe rot by B. dothidea may be suppressed through the inhibition of conidial germination on the kiwifruit treated with the agrochemicals.

Observations of Infection Structures after Inoculation with Colletotrichum orbiculare on the Leaves of Cucumber Plants Pre-inoculated with Two Bacterial Strains Pseudomonas putida or Micrococcus luteus

  • Jeun, Yong-Chull;Lee, Kyung-Hoo
    • Mycobiology
    • /
    • 제33권3호
    • /
    • pp.131-136
    • /
    • 2005
  • Infection structures were observed at the penetration sites on the leaves of cucumber plants inoculated with Colletotrichum orbiculare using a fluorescence microscope. The cucumber plants were previously drenched with suspension of bacterial strains Pseudomonas putida or Micrococcus luteus. The plants pre-inoculated with both bacterial strains were resistant against anthracnose after inoculation with C. orbiculare. To investigate the resistance mechanism by both bacterial strains, the surface of infected leaves was observed at the different time after challenge inoculation. At 3 days after inoculation there were no differences in the germination and appressorium formation of conidia of C. orbiculare as well as in the callose formation of the plants between both bacteria pre-inoculated and non-treated. At 5 days, the germination and appressorium formation of the fungal conidia were, however, significantly decreased on the leaves of plants pre-inoculated with M. luteus at the concentration with $1.0{\times}10^7\;cfu/ml$. Furthermore, callose formation of plants cells at the penetration sites was apparently increased. In contrast, there were no defense reactions of the plants at the concentration with $1.0{\times}10^6\;cfu/ml$ of M. luteus. Similarly, inoculation P. putida caused no plant resistance at the low concentration, whereas increase of callose formation was observed at the higher concentration. The results of this study suggest that the resistant mechanisms might be differently expressed by the concentration of pre-treatment with bacterial suspension.

MoRBP9 Encoding a Ran-Binding Protein Microtubule-Organizing Center Is Required for Asexual Reproduction and Infection in the Rice Blast Pathogen Magnaporthe oryzae

  • Fu, Teng;Park, Gi-Chang;Han, Joon Hee;Shin, Jong-Hwan;Park, Hyun-Hoo;Kim, Kyoung Su
    • The Plant Pathology Journal
    • /
    • 제35권6호
    • /
    • pp.564-574
    • /
    • 2019
  • Like many fungal pathogens, the conidium and appressorium play key roles during polycyclic dissemination and infection of Magnaporthe oryzae. Ran-binding protein microtubule-organizing center (RanBPM) is a highly conserved nucleocytoplasmic protein. In animalia, RanBPM has been implicated in apoptosis, cell morphology, and transcription. However, the functional roles of RanBPM, encoded by MGG_00753 (named MoRBP9) in M. oryzae, have not been elucidated. Here, the deletion mutant ΔMorbp9 for MoRBP9 was generated via homologous recombination to investigate the functions of this gene. The ΔMorbp9 exhibited normal conidial germination and vegetative growth but dramatically reduced conidiation compared with the wild type, suggesting that MoRBP9 is involved in conidial production. ΔMorbp9 conidia failed to produce appressoria on hydrophobic surfaces, whereas ΔMorbp9 still developed aberrantly shaped appressorium-like structures at hyphal tips on the same surface, suggesting that MoRBP9 is involved in the morphology of appressorium-like structures from hyphal tips and is critical for development of appressorium from germ tubes. Taken together, our results indicated that MoRBP9 played a pleiotropic role in polycyclic dissemination and infection-related morphogenesis of M. oryzae.

진흙버섯의 항인플루엔자 활성 및 활성성분 규명

  • Hwang, Byung Soon;Yun, Bong-Sik
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2016년도 춘계학술대회 및 임시총회
    • /
    • pp.41-41
    • /
    • 2016
  • Influenza viruses are RNA viruses that belong to the Orthomyxoviridae family, and those can be divided into three types; A, B, and C, which based on the differences of the inner nucleoproteins and genomic structures. All three genera differ in their genomic structure and nucleoprotein content, they are further classified into various serotypes based on the two surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA). These glycoproteins play crucial roles in viral infection and replication. Hemagglutinin mediates binding of virions to sialic acid receptors on the surfaces of target cells at the initial stage of infection. Neuraminidase cleaves the glycosidic bonds of sialic acids from the viral and cell surfaces to release the mature virions from infected cells, after viral replication. Because NA plays an important role in the viral life cycle, it is considered an attractive therapeutic target for the treatment of influenza. The methanolic extracts of Phellinus baumii and Phellinus igniarius exhibited significant activity in the neuraminidase inhibition assay. Polyphenolic compounds were isolated from the methanolic extracts. The structures of these compounds were determined to be hispidin, hypholomine B, inoscavin A, davallialactone, phelligridin D, phelligridin E, and phelligridin G by spectroscopic methods. Compounds inhibited the H1N1 neuraminidase activity in a dose-dependent manner with $IC_{50}$ values of 50.9, 22.9, 20.0, 14.2, 8.8, 8.1 and $8.0{\mu}M$, respectively. Moreover, these compounds showed anti-influenza activity in the viral cytopathic effect (CPE) reduction assay using MDCK cells. These results suggests that the polyphenols from P. baumii and P. igniarius are promising candidates for prevention and therapeutic strategies against viral infection.

  • PDF

Ultrastructural Characteristics of Necrosis and Stunt Disease in Red Pepper by the Mixed Infections of Tobacco mosaic virus-U1 or Pepper mild mottle virus and Pepper mottle virus

  • Kim, Dae-Hyun;Cho, Jeom-Deog;Kim, Jae-Hyun;Kim, Jenog-Soo;Cho, Eui-Kyoo
    • The Plant Pathology Journal
    • /
    • 제21권3호
    • /
    • pp.252-257
    • /
    • 2005
  • In single infection of Tobacco mosaic virus-U1 (TMV­U1) or Pepper mild mottle virus (PMMoV), mosaic symptoms were produced on the chili pepper cultivars of 'Cheongyang' and 'Wangshilgun'. However, in cultivars of 'Manitta' and 'Bugang', no symptoms were occurred. In single infection of Pepper mottle virus (PepMoV), symptoms of mottle and malformation were produced on the tested cultivars of 'Manitta', 'Bugang', 'Cheongyang', and 'Wangshilgun'. In the cultivars of 'Cheongyang' and 'Wangshilgun', synergistic symptoms of stunt and lethal death were induced by mixed infections in the two combinations of TMV-U1 + PepMoV and PMMoV+PepMoV. However, in cultivars of 'Manitta' and 'Bugang', synergistic symptoms were not noted, but mottling which was milder than that of single infection was produced. Cells infected singly with TMV-U1 and PMMoV in the cultivars of 'Cheongyang' and 'Wangshilgun', respectively, had the typical ultra-structures of tobamovirus as the stacked-band structure and multiple spiral aggregate (SA). In the cells and tissues infected with PepMoV on the cultivars of 'Cheongyang', 'Wangshilgun', 'Manitta' and 'Bugang', the potyvirus inclusions of pinwheels, scrolls, lamminated aggregates and amorphous inclusion were observed. In the cells infected mixedly with combinations of TMV­U1+PepMoV and PMMoV+PepMoV, the virus particles and inclusions of the two different viruses were found simultaneously in the same cytoplasm. The amounts of virus particles in mixed infections were more abundant than in single infection. The angled-layer aggregates (ALA) were observed only in the cells infected with both TMV-U1 and PepMoV.

Morphological Studies of Developmental Stages of Oculotrema hippopotami (Monogenea: Polystomatidae) Infecting the Eye of Hippopotamus amphibius (Mammalia: Hippopotamidae) Using SEM and EDXA with Notes on Histopathology

  • Rubtsova, Nataliya Yu.;Heckmann, Richard A.;Smit, Willem J.;Luus-Powell, Wilmien J.;Halajian, Ali;Roux, Francois
    • Parasites, Hosts and Diseases
    • /
    • 제56권5호
    • /
    • pp.463-475
    • /
    • 2018
  • The present study was performed to observe histopathological effects of Oculotrema hippopotami Stunkard, 1924 infection in the eye of Hippopotamus amphibius, as well as to reveal new details of morphology and structural features of this monogenean and its comparison between 2 age stages of the parasite. This was done using both light and scanning electron microscopy, energy dispersive X-ray analysis (EDXA) and histopathology. The presence of a mixture of different generations (adult and sub-adult) in one host individual is common for Oculotrema Stunkard, 1924 in contrast to Polystoma Zeder, 1800. New metrical and graphical information obtained for adults and sub-adults compared with the previous studies. Here we show the presence of genital papillae in adults, metrical data on the distal part of the vas deferens. SEM micrographs of sperm ejaculatory structures and information about the flattened dorsal side of the body provided for the first time. Histopathological changes, such as necrosis and hemorrhage in host tissues as a result of O. hippopotami attachment structures are described. Structural analysis of different body parts of O. hippopotami of both age groups are also included. We show qualitative differences in the presence of hardening ions (S, P, Ca) in attachment structures (oral and haptor suckers) that increase with the age of the worm. The presence of sub-adults and adults on the same host, together with high levels of infection without high pathogenicity may account for Oculotrema being one of the most successful parasites among the Monogenea.

Pre-Infection Behavior of the Pitch Canker Fungus Fusarium circinatum on Pine Stems

  • Thoungchaleun, Vilakon;Kim, Ki-Woo;Lee, Don-Koo;Kim, Chang-Soo;Park, Eun-Woo
    • The Plant Pathology Journal
    • /
    • 제24권2호
    • /
    • pp.112-117
    • /
    • 2008
  • Pre-infection behavior of Fusarium circinatum on stems of pine species was investigated with scanning electron microscopy. Two-year-old stems of Pinus densiflora and p. rigida were inoculated with the fungal conidial suspension and subjected to $25^{\circ}C$ for up to 16 hr. Most microconidia germinated 12 hr after inoculation on pine stems. Conidia produced germ tubes from either one or both ends of microconidia. Germ tubes grew over the stem surface and appeared to enter host tissues through natural openings on pine stems. Surface cracks in the cork were entrance sites of germ tubes of F. circinatum. In addition, host cell wall cracks were often found at the tip of germ tubes. The cuticle appeared to be eroded either at the tip of germ tubes or around germlings. Germ tubes also produced appressoria-like structures, exhibiting swollen tips of germ tubes on the stem surface. There seems to be no significant differences in the pre-infection behavior of F. circinatum on stems between the two pine species.

Visualization of Phytophthora palmivora Infection in Oil Palm Leaflets with Fluorescent Proteins and Cell Viability Markers

  • Ochoa, Juan C.;Herrera, Mariana;Navia, Monica;Romero, Hernan Mauricio
    • The Plant Pathology Journal
    • /
    • 제35권1호
    • /
    • pp.19-31
    • /
    • 2019
  • Bud rot (BR) is the most devastating disease affecting oil palm (Elaeis guineensis) crops in Colombia. Its causal agent, Phytophthora palmivora, initiates the infection in immature oil palm leaflets producing necrotic lesions, followed by colonization of opportunistic necrotrophs, which increases disease damage. To improve the characterization of the disease, we transformed P. palmivora using Agrobacterium tumefaciens-mediated transformation (ATMT) to include the fluorescent proteins CFP-SKL (peroxisomal localization), eGFP and mRFP1 (cytoplasmic localization). The stability of some transformants was confirmed by Southern blot analysis and single zoospore cultures; additionally, virulence and in vitro growth were compared to the wild-type isolate to select transformants with the greatest resemblance to the WT isolate. GFP-tagged P. palmivora was useful to identify all of the infective structures that are commonly formed by hemibiotrophic oomycetes, including apoplastic colonization and haustorium formation. Finally, we detected cell death responses associated with immature oil palm tissues that showed reduced susceptibility to P. palmivora infection, indicating that these tissues could exhibit age-related resistance. The aim of this research is to improve the characterization of the initial disease stages and generate cell biology tools that may be useful for developing methodologies for early identification of oil palm materials resistant or susceptible to BR.