This paper describes the evaluation and selection of MEMS(Micro-Elect Mechanical System) based inertial sensor to fit to implement the Inertial Measurement Unit(IMU) for a small-sized vessel at sea. At first, the error model and the noise model of the inertial sensors are defined with Euler's equations and then, the inertial sensor evaluation is carried out with Allan Variance techniques and Monte Carlo simulation. As evaluation results for the five sensors, ADIS16405, SAR10Z, SAR100Grade100, LIS344ALH and ADXL103, the combination of gyroscope and accelerometer of ADIS16405 is shown minimum error having around 160 m/s standard deviation of velocity error and around 35 km standard deviation of position error after 600 seconds. Thus, we select the ADIS16405 inertial sensor as a MEMS-based inertial sensor to implement IMU and, the error reducing method is also considered with the search for reference papers.
This paper presents an underwater hybrid navigation system for a semi-autonomous underwater vehicle (SAUV). The navigation system consists of an inertial measurement unit (IMU), and a Doppler velocity log (DVL), accompanied by a magnetic compass. The errors of inertial measurement units increase with time, due to the bias errors of gyros and accelerometers. A navigational system model is derived, to include the scale effect and bias errors of the DVL, of which the state equation composed of the navigation states and sensor parameters is 20. The conventional extended Kalman filter was used to propagate the error covariance, update the measurement errors, and correct the state equation when the measurements are available. Simulation was performed with the 6-d.o,f equations of motion of SAUV, using a lawn-mowing survey mode. The hybrid underwater navigation system shows good tracking performance, by updating the error covariance and correcting the system's states with the measurement errors from a DVL, a magnetic compass, and a depth sensor. The error of the estimated position still slowly drifts in the horizontal plane, about 3.5m for 500 seconds, which could be eliminated with the help of additional USBL information.
Educational equipment that enables the user or device to recognize the indoor position by using the acceleration and angular velocity of the IMU (Inertial Measurement Unit) sensor is introduced. With this educational equipment, various position recognition and tracking algorithms can be learned and creative engineering design works can be realized. The data value of the IMU sensor is transmitted to the MCU (microcontroller unit) through $I^2C$ (Inter-Integrated Circuit), and the indoor position recognition algorithm is applied by processing the data value through the filter and numerical method. It is then designed to use wireless communication to send and receive processed values and to be recognized by the user. As an example using this equipament, the case of "Implementation and recognition of virtual position using computation of moving direction and distance using IMU sensor" is introduced, and various creative engineering design application is discussed.
Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
/
2003.05a
/
pp.149-156
/
2003
This paper presents an underwater hybrid navigation system for a semi-autonomous underwater vehicle (SAUV). The navigation system consists of an inertial measurement unit (IMU), an ultra-short baseline (USBL) acoustic navigation sensor and a doppler velocity log (DVL) accompanying a magnetic compass. The errors of inertial measurement units increase with time due to the bias errors of gyros and accelerometers. A navigational system model is derived to include the error model of the USBL acoustic navigation sensor and the scale effect and bias errors of the DVL, of which the state equation composed of the navigation states and sensor parameters is 25 in the order. The conventional extended Kalman filter was used to propagate the error covariance, update the measurement errors and correct the state equation when the measurements are available. Simulation was performed with the 6-d.o.f. equations of motion of SAUV in a lawn-mowing survey mode. The hybrid underwater navigation system shows good tracking performance by updating the error covariance and correcting the system's states with the measurement errors from a DVL, a magnetic compass and a depth senor. The error of the estimated position still slowly drifts in horizontal plane about 3.5m for 500 seconds, which could be eliminated with the help of additional USBL information.
In this paper, the alignment and navigation results by INGU(Inertial Navigation and Guidance Unit) onboard software and by Inertial Explorer which is a post-processing software specialized for IMU(Inertial Measurement Unit) are compared for identification of inertial sensor error models and estimation of alignment and navigation errors for KSLV-I INGU. For verification of the IMU error estimated by Kalman Filter of Inertial Explorer, the covariance parameters of inertial sensor error model state are identified by using stochastic error model of inertial sensors estimated by Allan variance and the alignment and navigation test with static condition and the land navigation test with dynamic condition are carried out. The validity of inertial sensor model for KSLV-I INGU is verified by comparison the alignment and navigation results of INGU on-board software and Inertial Explorer.
International Journal of Aeronautical and Space Sciences
/
v.6
no.1
/
pp.27-43
/
2005
An INS(Inertial Navigation System) is composed of a navigation computer and an IMU(Inertial Measurement Unit), and can be applied to estimate a vehicle's state. But the inertial sensors assembled in the IMU are too complicated and expensive to use for the general application purpose. In this study, a new concept of inertial sensor system using magnetic levitation is proposed. The proposed system is expected to replace one single-axis rate or position gyroscope, and one single-axis accelerometer concurrently with a relatively simple structure. A simulation of the proposed system is given to describe the capability of this new concept.
International Journal of Aeronautical and Space Sciences
/
v.11
no.3
/
pp.234-239
/
2010
The utilization of micro-electro-mechanical system (MEMS) gyros and accelerometers in low-level inertial measurement unit (IMU) influences cost effectiveness in a positive way under the condition that device error characteristics are fully calibrated. The conventional calibration process utilizes a rate table; however, this paper proposes a new method for achieving reference calibration data from the natural motion of pendulum to which the IMU undergoing calibration is attached. This concept was validated with experimental data. The pendulum angle measurements correlate extremely well with the solutions acquired from the pendulum equation of motion. The calibration data were computed using the regression method. The whole process was validated by comparing the measurement from the 6 sensor components with the measurements reconstructed using the identified calibration data.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.8
/
pp.3011-3024
/
2021
Pose estimation of the sensor is important issue in many applications such as robotics, navigation, tracking, and Augmented Reality. This paper proposes visual-inertial integration system appropriate for dynamically moving condition of the sensor. The orientation estimated from Inertial Measurement Unit (IMU) sensor is used to calculate the essential matrix based on the intrinsic parameters of the camera. Using the epipolar geometry, the outliers of the feature point matching are eliminated in the image sequences. The pose of the sensor can be obtained from the feature point matching. The use of IMU sensor can help initially eliminate erroneous point matches in the image of dynamic scene. After the outliers are removed from the feature points, these selected feature points matching relations are used to calculate the precise fundamental matrix. Finally, with the feature point matching relation, the pose of the sensor is estimated. The proposed procedure was implemented and tested, comparing with the existing methods. Experimental results have shown the effectiveness of the technique proposed in this paper.
Journal of Institute of Control, Robotics and Systems
/
v.16
no.12
/
pp.1167-1175
/
2010
This paper presents the use of the inertial measurement unit information and the infrared sector information for getting the position of an object. Travel distance is usually calculated from the double integration of the accelerometer output with respect to time; however, the accumulated errors due to the drift are inevitable. The orientation change of the accelerometer also causes error because the gravity is added to the measured acceleration. Unless three axis orientations are completely identified, the accelerometer alone does not provide correct acceleration for estimating the travel distance. We propose a way of minimizing the error due to the change of the orientation. In order to reduce the accumulated error, the infrared sector information is fused with the inertial measurement unit information. Infrared sector information has highly deterministic characteristics, different from RFID. By putting several infrared emitters on the ceiling, the floor is divided into many different sectors and each sector is set to have a unique identification. Infrared light based sector information tells the sector the object is in, but the size of the uncertainty is too large if only the sector information is used. This paper presents an algorithm which combines both the inertial measurement unit information and the sector information so that the size of the uncertainty becomes smaller. It also introduces a framework which can be used with other types of the artificial landmarks. The characteristics of the developed infrared light based sector and the proposed algorithm are verified from the experiments.
Junwoo Park;Jongwon Choi;Seyoung Lee;Kitaek Lim;Woochol Joseph Choi
Physical Therapy Korea
/
v.30
no.2
/
pp.102-109
/
2023
Background: While efforts have been made to differentiate fall risk in older adults using wearable devices and clinical methodologies, technologies are still infancy. We applied a decision tree (DT) algorithm using inertial measurement unit (IMU) sensor data and clinical measurements to generate high performance classification models of fall risk of older adults. Objects: This study aims to develop a classification model of fall risk using IMU data and clinical measurements in older adults. Methods: Twenty-six older adults were assessed and categorized into high and low fall risk groups. IMU sensor data were obtained while walking from each group, and features were extracted to be used for a DT algorithm with the Gini index (DT1) and the Entropy index (DT2), which generated classification models to differentiate high and low fall risk groups. Model's performance was compared and presented with accuracy, sensitivity, and specificity. Results: Accuracy, sensitivity and specificity were 77.8%, 80.0%, and 66.7%, respectively, for DT1; and 72.2%, 91.7%, and 33.3%, respectively, for DT2. Conclusion: Our results suggest that the fall risk classification using IMU sensor data obtained during gait has potentials to be developed for practical use. Different machine learning techniques involving larger data set should be warranted for future research and development.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.