• Title/Summary/Keyword: Inertial mass

Search Result 105, Processing Time 0.027 seconds

Anti-Sway Control System Design for the Container Crane

  • An, Sang-Back;Kim, Young-Bok;Kang, Gi-Bong;Zhai, Guisheng
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1404-1409
    • /
    • 2003
  • The sway control problem of the pendulum motion of the container crane hanging on the trolley, which transports containers from the container ship to the truck, is considered in this paper. In the container crane control problem, the main issue is to suppress the residual swing motion of the container at the end of the acceleration, deceleration or the case of that the unexpected disturbance input exists. For this problem, in general, the trolley motion control strategy is introduced and applied to real plants. In this paper, we suggest a new type of swing motion control system for a crane system in which a small auxiliary mass is installed on the spreader. The actuator reacting against the auxiliary mass applies inertial control forces to the spreader of the container crane to reduce the swing motion in the desired manner. In this paper, we consider that the length of the rope varies is we design the anti-sway control system based on LMI(linear matrix inequality) approach. And, it will be shown that the proposed control strategy is useful and it can be easily applicable to the real world. So, in this study, we investigate usefulness of the proposed anti-sway system and evaluate system performance from simulation and experimental studies.

  • PDF

A Study on the Sway Control of a Crane Based on Gain-Scheduling Approach (Gain-Scheduling 기법을 이용한 크레인의 흔들림 제어에 관한 연구)

  • Kim, Young-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.53-64
    • /
    • 2001
  • The gain-scheduling control technique is vary useful in the control problem incorporating time varying parameters which can be measured in real time. Based on these facts, in this paper the sway control problem of the pendulum motion of a container hanging on the trolly, which transports containers from a container ship to trucks, is considered. In the container crane control problem, suppressing the residual swing motion of the container at the end of acceleration, deceleration or the case of that the unexpected disturbance input exists is main issue. For this problem, in general, the trolley motion control strategy is introduced and applied. But, in this paper, we introduce and synthesize a new type of swing motion control system. In this control system, a small auxiliary mass is installed on the spreader. And the actuator reacts against the auxiliary mass, applying inertial control forces to the container to reduce the swing motion in the desired manner. In this paper, we assume that an plant parameter is varying and apply the gain-scheduling control technique design the anti-swing motion control system for the controlled plant. In this control system, the controller dynamics are adjusted in real-time according to time-varying plant parameters. And the simulation result shows that the proposed control strategy is shown to be useful to the case of time-varying system and, robust to disturbances like winds and initial sway motion.

  • PDF

Adaptive control of rotationally non-linear asymmetric structures under seismic loads

  • Amini, Fereidoun;Rezazadeh, Hassan;Afshar, Majid Amin
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.721-730
    • /
    • 2018
  • This paper aims to inspect the effectiveness of the Simple Adaptive Control Method (SACM) to control the response of asymmetric buildings with rotationally non-linear behavior under seismic loads. SACM is a direct control method and was previously used to improve the performance of linear and non-linear structures. In most of these studies, the modeled structures were two-dimensional shear buildings. In reality, the building plans might be asymmetric, which cause the buildings to experience torsional motions under earthquake excitation. In this study, SACM is used to improve the performance of asymmetric buildings, and unlike conventional linear models, the non-linear inertial coupling terms are considered in the equations of motion. SACM performance is compared with the Linear Quadratic Regulator (LQR) algorithm. Moreover, the LQR algorithm is modified, so that it is appropriate for rotationally non-linear buildings. Active tuned mass dampers are used to improve the performance of the modeled buildings. The results show that SACM is successful in reducing the response of asymmetric buildings with rotationally non-linear behavior under earthquake excitation. Furthermore, the results of the SACM were very close to those of the LQR algorithm.

Swing-Motion Control System Design for the Crane Based on Simultaneous Optimum Design Approach (구조제와 제어계의 통합적 설계법을 이용한 크레인의 Swing-Motion 제어계 설계)

  • Jang Ji Seong;Kim Young Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.5 s.236
    • /
    • pp.777-785
    • /
    • 2005
  • The swing motion control problem of a container hanging on the trolly is considered in the paper. In the container crane control problem, suppressing the residual swing motion of the container at the end of acceleration, deceleration or the case of that the unexpected disturbance input exists is main issue. For this problem, in general, many trolley motion control strategies are introduced and applied. In this paper, we introduce and synthesize a swing motion control system in which a small auxiliary mass is installed on the spreader made by ourselves. In this control system, the actuator reacting against the auxiliary mass applies inertial control forces to the container to reduce the swing motion in the desired manner. In many studies, the controllers used to suppress the vibration have been synthesized for the given mathematical model of plants. And, the designers have not been able to utilize the degree of freedom to adjust the structural parameters for the control object. To overcome this problem, so called 'Structure/control Simultaneous Method' is used. In this paper, the simultaneous design method is used to determine the optimum weight of moving mass such that the optimal system performance would be achieved. And the experimental result shows that the proposed control strategy is useful to the case of that the controlled system is exposed to the uncertainties and, robust to the unexpected disturbance inputs.

Design and Performance Analysis of Lateral Type MEMS Inertial Switch (수평 구동형 MEMS 관성 스위치 설계 및 성능해석)

  • Gim, Hakseong;Jang, Seung-gyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.7
    • /
    • pp.523-528
    • /
    • 2020
  • A lateral type MEMS inertial switch was designed on the same principle as spring-mass system. The MEMS switch is used for arming mechanism of the arm-fire device by sensing the applied acceleration. We analyzed the switching capability of the MEMS switch under various acceleration conditions via performance model. Simulation results showed that the MEMS switch works very well at 10 g when the applied acceleration slope does not exceed 10 g/msec. On the other hand, the threshold operating acceleration level simulation exceeded the requirement (10±2 g) due to the width and length of the spring by considering 10% tolerance of the design values. Design modification of doubling the width of the spring, which is difficult to reduce less than 10% tolerance in fabrication process, was proposed after confirming the simulation results comply the requirement.

Numerical analysis of condensation in the condenser using the porous medium approach (다공성 매질 개념을 이용한 응축기의 응축 열전달에 관한 수치 해석)

  • Je, Jun-Ho;Choi, Chi-Woong;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2261-2266
    • /
    • 2007
  • In this study, the numerical analysis to estimate condensation heat and mass transfer of the condenser was carried out using the PMA (porous medium approach). In the PMA, the details of tube bundle in the condenser are replaced by the porous medium, and the flow resistance term is added in the momentum equation. In this regard, the PMA is quite helpful for the study of tube bundle in the large condenser. The pressure loss through tube bundle can be compensated by viscous and inertial momentum sink terms, which was validated numerically. Value of the pressure drop was compared to that of Butterworth correlation. Three dimensional analysis of condensation for McAllister condenser with the PMA was conducted using Fluent 6.2 and UDFs (use-defined functions). The result of condensation rate was analogous to previous results (experimental and numerical data).

  • PDF

Development and Application of Korean Dummy Models (한국인 인체 모델의 개발과 적용)

  • Lee, Sang-Cheol;Son, Gwon;Kim, Seong-Jin
    • Journal of the Ergonomics Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.13-23
    • /
    • 2002
  • Human dummies are essential tools in the development of such products as vehicle have been actively used not only in reach and view field tests. but also in impact perception evaluations. This study attempted to obtain geometric and dynamic model body segments from Korean anthropometric data. The investigation focused on the de both human and dummy for the geometric and inertial properties. The dynamic modeli being suggested is based on rigid body dynamics using fifteen individual body segments by joins. The segments are connected at the locations representing the physical joint body so that each segment has its mass and moment of inertia. For visual three-dimensional graphic was used for easier implementation of the dumn applications. For applications, proposed Korean dummies Were used in dynamic crash and driver's view and reach test modules were developed in virtual environment.

Dynamic characteristics and response analysis of accelerating underwater structures

  • Liu, Zhengxing;Williams, F.W.;Jemah, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.6
    • /
    • pp.613-632
    • /
    • 1998
  • A coupling system for a structure accelerating through a fluid is considered which is composed of the structure and the fluid in a finite surrounding volume. Based on the variational principle, the finite element equations of hydrodynamic pressure and structural elastic vibration are deduced. A numerical method is given for the dynamic character and response of the structure which takes the coupled fluid into account. The effect of axial inertial forces on the dynamic character and response of rapidly accelerating structures is also considered.

Development of Korean Dummies Based on Anthropometric Data

  • Lee, Sang-Cheol;Son, Kwon;Kim, Seong-Jin;Jeong, Yun-Seok;Choi, Kyung-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.181.1-181
    • /
    • 2001
  • Human dummies are essential tools in the development of such sensible products as vehicles. Dummies are actively used not only in reach and view field tests, major ergonomic evaluations, but also in impact tests and perception evaluations. This study attempts to obtain possible correlations of human body segments from Korean anthropometric data. The investigation is focused on the description of human and dummy geometric and inertial properties. The modeling approach suggested is based on rigid body dynamics using fifteen individual body segments connected by joints. The segments are joined at locations representing the physical joints of the human body and have the mass of the body between body joints. For visualization, a three-dimension graphic technique is used ...

  • PDF

Development of Inertial Locking Anti-G Buckle of A Seatbelt System With Pre-tensioner (프리텐셔너가 장착된 시트벨트 시스템의 관성잠김 안전버클 개발)

  • Tak, Tae-Oh;Kuk, Min-Gu;Kim, Dae-Hee;Park, Jae-Soon;Shin, Seung-Eon;Choi, Seok
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.47-54
    • /
    • 2006
  • To improve passenger safety, seat belt systems with pre-tensioner that tightens seat belt webbing using explosive just before collision are widely used these days. Even though seatbelt must not unlatched without passengers' operation. explosive power of pre-tensioner can cause unlocking of a buckle. To prevent the unlocking, an anti-g mass that blocks displacement of the release button has been attached to the buckle. In this study, the dynamics and statics of locking mechanism associated with operation of anti-g buckle has been theoretically investigated, and important design variables that affect the operation of anti-g buckle have been identified. Through the total seat belt system's dynamic simulation using force and displacement inputs obtained from seat belt sled test, design of the proposed anti-g buckle has been validated.

  • PDF