• Title/Summary/Keyword: Inertial control

Search Result 447, Processing Time 0.028 seconds

Stepwise inertial control of a DFIG to prevent the over-deceleration in wind speed reduction (풍속 감소 시 Over-Deceleration 방지를 위한 DFIG 풍력발전기의 계단형 출력 관성제어)

  • Kang, Moses;Lee, Jinsik;Kang, Yong Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.173-174
    • /
    • 2015
  • If a wind speed decreases during inertial control of a wind turbine generator (WTG), the rotor speed might decrease below the minimum operating limit, which is called over-deceleration (OD). When OD occurs, inertial control should be disabled and then the output power of a WTG significantly decreases. This significant power reduction causes a subsequent frequency drop. This paper proposes the stepwise inertial control to prevent OD when a wind speed decreases during inertial control. To do this, the proposed scheme changes the additional power output based on the rotor speed. The performance of the proposed scheme is investigated using an EMTP-RV simulator. The results show that the proposed inertial control scheme prevent OD even when the wind speed decreases during inertial control.

  • PDF

Vibration control of a stay cable with a rotary electromagnetic inertial mass damper

  • Wang, Zhi Hao;Xu, Yan Wei;Gao, Hui;Chen, Zheng Qing;Xu, Kai;Zhao, Shun Bo
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.627-639
    • /
    • 2019
  • Passive control may not provide enough damping for a stay cable since the control devices are often restricted to a low location level. In order to enhance control performance of conventional passive dampers, a new type of damper integrated with a rotary electromagnetic damper providing variable damping force and a flywheel serving as an inertial mass, called the rotary electromagnetic inertial mass damper (REIMD), is presented for suppressing the cable vibrations in this paper. The mechanical model of the REIMD is theoretically derived according to generation mechanisms of the damping force and the inertial force, and further validated by performance tests. General dynamic characteristics of an idealized taut cable with a REIMD installed close to the cable end are theoretically investigated, and parametric analysis are then conducted to investigate the effects of inertial mass and damping coefficient on vibration control performance. Finally, vibration control tests on a scaled cable model with a REIMD are performed to further verify mitigation performance through the first two modal additional damping ratios of the cable. Both the theoretical and experimental results show that control performance of the cable with the REIMD are much better than those of conventional passive viscous dampers, which mainly attributes to the increment of the damper displacement due to the inertial mass induced negative stiffness effects of the REIMD. Moreover, it is concluded that both inertial mass and damping coefficient of an optimum REIMD will decrease with the increase of the mode order of the cable, and oversize inertial mass may lead to negative effect on the control performance.

Development and Flight Result of Inertial Navigation System for KSR-III Rocket (KSR-III 로켓의 관성항법시스템 개발과 비행시험 결과)

  • 노웅래;조현철;안재명;박정주;최형돈
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.6
    • /
    • pp.557-565
    • /
    • 2004
  • The Korean space program was marked by the successful launching of a KSR-III liquid propelled sounding rocket. The Inertial Navigation System (INS) which carries out critical mission functions of navigation, guidance and control was domestically developed and perfectly certified through the flight test. The system consists of a strapdown inertial measurement, an onboard computer and flight software. This paper will describes the development works of the inertial navigation system, including top level system design, hardware and software. And it summarizes flight results.

A study on structural integrity and dynamic characteristic of inertial load test equipment for performance test of railway vehicle propulsion control system (철도차량 추진제어장치 성능시험을 위한 관성부하 시험설비의 구조안전성 및 동특성 평가 연구)

  • Jang, Hyung-Jin;Shin, Kwang-Bok;Lee, Sang-Hoon;Lee, Dae-Bong
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1389-1394
    • /
    • 2010
  • This paper describes the evaluation of structural integrity and dynamic characteristic of inertial load test equipments for performance test of railway vehicle propulsion control system. The propulsion control system of railway vehicle has to be confirmed of safety and reliability prior to it's application. Therefore, inertial load test equipments were designed through theoretical equation for performance test of propulsion control system. The structural analysis of inertial load test equipments was conducted using Ansys v11.0 and it's dynamic characteristic was evaluated the designed using Adams. The results showed that the structural integrity of inertial load test equipment was satisfied with a safety factor of 10.2. Also, the structural stability was proved by maximum dynamic displacement of 0.82mm.

  • PDF

Evaluation of Vibration Control Performance for Active Hybrid Mount System Featuring Inertial Actuator (관성형 작동기를 이용한 능동 하이브리드 마운트 시스템의 진동제어 성능 평가)

  • Oh, Jong-Seok;Choi, Seung-Bok;Nguyen, Vien Quoc;Moon, Seok-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.8
    • /
    • pp.768-773
    • /
    • 2011
  • This work presents an experimental investigation on vibration control of the active hybrid mount system for naval ships. To reduce unwanted vibrations, this paper proposes an active mount which consists of rubber element, piezostack actuator and inertial mass. The rubber element supports a mass. The piezostack actuator generates a proper control force and supply it to the mount system. To avoid being broken piezostack actuator, an actuator of the proposed mount is devised as an inertial type, in which a piezostack actuator is positioned between inertial mass and rubber element. Vibration control performances of the active mount system are evaluated via experiment. To attenuate the unwanted vibrations transferred from upper mass, the feedforward control is designed. In order to implement a control experiment, the active mount system supported by four active mounts is constructed. For realization of the controller, one-chip board is manufactured and utilized. Subsequently, vibration control performances of the proposed active mount system are experimentally evaluated in frequency domains.

Foot Movement Tracking System using Ultrasonic Sensors and Inertial Sensors (초음파센서와 관성센서를 이용한 발의 움직임 추적 시스템)

  • Boo, Jang-Hun;Park, Sang-Kyeong;Suh, Young-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.11
    • /
    • pp.1117-1124
    • /
    • 2010
  • This paper presents a foot movement tracking system using ultrasonic sensors and inertial sensors, where the position and velocity of foot are computed using inertial sensors and ultrasonic sensors mounted on a shoe. A foot movement can be estimated using an inertial navigation algorithm only; however, the error tends to increase due to biases of gyroscopes and accelerometers. To reduce the error, a localization system using ultrasonic sensors is additionally used. In the localization system using ultrasonic sensors, the position is continuously calculated in the absolute coordinate. An indirect Kalman filter is used to combine inertial sensors and ultrasonic sensors. Through experiments, it is shown that the proposed system can track a foot movement.

Numerical Analysis of Relative Orbit Control Strategy for CANYVAL-X Mission

  • Lee, Youngro;Park, Sang-Young;Park, Jae-Pil;Song, Youngbum
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.235-248
    • /
    • 2019
  • This paper suggests a relative orbit control strategy for the CubeSat Astronomy by NASA and Yonsei using Virtual Telescope Alignment eXperiment (CANYVAL-X) mission whose main goal is to demonstrate an essential technique, which is an arrangement among two satellites and a specific celestial object, referred to as inertial alignment, for a next-generation virtual space telescope. The inertial alignment system is a relative orbit control system and has requirements for the relative state. Through the proposed orbit control strategy, consisting of separation, proximity keeping, and reconfiguration, the requirements will be satisfied. The separation direction of the two CubeSats with respect to the orbital plane is decided to provide advantageous initial condition to the orbit controller. Proximity keeping is accomplished by differential atmospheric drag control (DADC), which generates acceleration by changing the spacecraft's effective cross section via attitude control rather than consuming propellant. Reconfiguration is performed to meet the requirements after proximity keeping. Numerical simulations show that the requirements can be satisfied by the relative orbit control strategy. Furthermore, through numerical simulations, it is demonstrated that the inertial alignment can be achieved. A beacon signal had been received for several months after the launch; however, we have lost the signal at present.

A study on position control of wheeled mobile robot using the inertial navigation system (관성항법시스템을 이용한 구륜 이동 로보트의 위치제어에 관한 연구)

  • 박붕렬;김기열;김원규;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1144-1148
    • /
    • 1996
  • This paper presents WMR modelling and path tracking algorithm using Inertial Navigation System. The error models of gyroscope and accelerometers in INS are derived by Gauss-Newton method which is nonlinear regression model. Then, to test availability of error model, we pursue the fitness diagnosis about probability characteristic for real data and estimated data. Performance of inertial sensor with error model and Kalman filter is pursued by comparing with one without them. The computer simulation shows that position error remarkably decrease when error compensation is applied.

  • PDF

Mobile Robot Destination Generation by Tracking a Remote Controller Using a Vision-aided Inertial Navigation Algorithm

  • Dang, Quoc Khanh;Suh, Young-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.613-620
    • /
    • 2013
  • A new remote control algorithm for a mobile robot is proposed, where a remote controller consists of a camera and inertial sensors. Initially the relative position and orientation of a robot is estimated by capturing four circle landmarks on the plate of the robot. When the remote controller moves to point to the destination, the camera pointing trajectory is estimated using an inertial navigation algorithm. The destination is transmitted wirelessly to the robot and then the robot is controlled to move to the destination. A quick movement of the remote controller is possible since the destination is estimated using inertial sensors. Also unlike the vision only control, the robot can be out of camera's range of view.

Inertial Control of a DFIG-based Wind Power Plant using the Maximum Rate of Change of Frequency and the Frequency Deviation

  • Lee, Hyewon;Kim, Jinho;Hur, Don;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.496-503
    • /
    • 2015
  • In order to let a wind generator (WG) support the frequency control of a power system, a conventional inertial control algorithm using the rate of change of frequency (ROCOF) and frequency deviation loops was suggested. The ROCOF loop is prevailing at the initial stage of the disturbance, but the contribution becomes smaller as time goes on. Moreover, its contribution becomes negative after the frequency rebound. This paper proposes an inertial control algorithm of a wind power plant (WPP) using the maximum ROCOF and frequency deviation loops. The proposed algorithm replaces the ROCOF loop in the conventional inertial control algorithm with the maximum ROCOF loop to retain the maximum value of the ROCOF and eliminate the negative effect after the frequency rebound. The algorithm releases more kinetic energy both before and after the frequency rebound and increases the frequency nadir more than the conventional ROCOF and frequency loops. The performance of the algorithm was investigated under various wind conditions in a model system, which includes a doubly-fed induction generator-based WPP using an EMTP-RV simulator. The results indicate that the algorithm can improve the frequency drop for a disturbance by releasing more kinetic energy.