• 제목/요약/키워드: Inertial Navigation system

검색결과 453건 처리시간 0.026초

저급 관성센서를 이용한 독립적인 관성항법시스템에 관한 연구 (A Study on the Stand-alone Inertial Navigation System with low-cost Inertial Sensors)

  • 조재범;이자성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2270-2273
    • /
    • 2001
  • This paper presents calibration and alignment algorithms for low-cost inertial sensors. The error models for gyro and accelerometer are presented with a study of their effects. A navigational Kalman Filter is derived based on those error models. Test results are presented, which shows the initial calibration and alignment scheme and the proposed filter configuration effectively reduce the drift of the sensors and provide improved accuracy for its practical use for navigation.

  • PDF

GPS와 INS의 센서융합을 이용한 자율항법용 확장형 칼만필터 설계 (Extended kalman filter design for autonomous navigation with GPS and INS sensor system fusion)

  • 윤득선;유환신
    • 센서학회지
    • /
    • 제16권4호
    • /
    • pp.294-300
    • /
    • 2007
  • Autonomous unmanned vehicle is able to find the path and the way point by itself. For the more precise navigation performance, Extended kalman filter, which is integrated with inertial navigation system and global positioning system is proposed in this paper. Extended kalman filter's performance is evaluated by the simulation and applied to the unmanned vehicle. The test result shows the effectiveness of extended kalman filter for the navigation.

레버암 효과와 고장 감지 및 배제 성능을 고려한 여분의 3축 MEMS IMU의 평면 배치 기법 (Optimal In-Plane Configuration of 3-axis MEMS IMUs Considering Fault Detection and Isolation Performance and Lever Arm Effect)

  • 김응주;김용훈;최민준;송진우
    • 전기학회논문지
    • /
    • 제67권12호
    • /
    • pp.1648-1656
    • /
    • 2018
  • The configuration of redundant inertial sensors are very important when considering navigation performance and fault detection and isolation (FDI) performance. By constructing a redundant sensor system using multiple inertial sensors, it is possible to improve the navigation performance and fault detection and isolation performance, which are highly related to the sensor configuration and allocation. In order to deploy multiple MEMS inertial measurement units effectively, a configuration and allocation methods considering navigation performance, fault detection and isolation performance, and lever arm effect in one plane are presented, and the performance is analyzed through simulation in this research. From the results, it is confirmed that the proposed configuration and allocation method can improve navigation, FDI, and lever arm effect rejection performances more effectively by more than 70%.

Attitude Determination GPS/INS Integration System Design Using Triple Difference Technique

  • Oh, Sang-Heon;Hwang, Dong-Hwan;Park, Chan-Sik;Lee, Sang-Jeong
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권4호
    • /
    • pp.615-625
    • /
    • 2012
  • GPS attitude outputs or carrier phase observables can be effectively utilized to compensate the attitude error of the strapdown inertial navigation system. However, when the integer ambiguity is not correctly resolved and/or a cycle slip occurs, an erroneous GPS output can be obtained. If the erroneous GPS output is applied to the attitude determination GPS/INS (ADGPS/INS) integrated navigation system, the performance of the system can be degraded. This paper proposes an ADGPS/INS integration system using the triple difference carrier phase observables. The proposed integration system contains a cycle slip detection algorithm, in which the inertial information is combined. Computer simulations and flight test were performed to verify effectiveness of the proposed navigation system. Results show that the proposed system gives an accurate and reliable navigation solution even when the integer ambiguity is not correctly resolved and the cycle slip occurs.

반자율무인잠수정의 수중 복합항법 시스템 성능평가를 위한 회전팔 시험 (Rotating Arm Test for Assessment of an Underwater Hybrid Navigation System for a Semi-Autonomous Underwater Vehicle)

  • 이종무;이판묵;김시문;홍석원;서재원;성우제
    • 한국해양공학회지
    • /
    • 제17권4호
    • /
    • pp.73-80
    • /
    • 2003
  • This paper presents considerations on the results of the rotating arm test, which was carried out for assessment of an hybrid navigation system for a semi-autonomous underwater vehicle. The navigation system consists of an inertial measurement unit(IMU), an ultra-short baseline(USBL) acoustic navigation sensor and a doppler velocity log(DVL) accompanying a magnetic compass. A navigational systemmodel is derived to include the scale effect and bias errors of the DVL, of which the state equation composed of the navigation states and sensor parameters are 25 in the order. The extended Kalman filter was used to propagate the error covariance, The rotating arm tests were carried out in the Ocean Engineering Basin of KRISO, to generate circular motion. The hybrid underwater navigation system shows good tracking performance against the circular planar motion. Additionally this paper checked the effects of the sampling ratio of the navigation system and the possibility of the dead reckoning with the DVL and the magnetic compass to estimate the position of the vehicle.

Improvement of a Low Cost MEMS Inertial-GPS Integrated System Using Wavelet Denoising Techniques

  • Kang, Chang-Ho;Kim, Sun-Young;Park, Chan-Gook
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권4호
    • /
    • pp.371-378
    • /
    • 2011
  • In this paper, the wavelet denoising techniques using thresholding method are applied to the low cost micro electromechanical system (MEMS)-global positioning system(GPS) integrated system. This was done to improve the navigation performance. The low cost MEMS signals can be distorted with conventional pre-filtering method such as low-pass filtering method. However, wavelet denoising techniques using thresholding method do not distort the rapidly-changing signals. They can reduce the signal noise. This paper verified the improvement of the navigation performance compared to the conventional pre-filtering by simulation and experiment.

소형 선박용 관성측정장치 개발을 위한 MEMS 기반 관성 센서의 평가와 선정 (Evaluation and Selection of MEMS-Based Inertial Sensor to Implement Inertial Measurement Unit for a Small-Sized Vessel)

  • 임정빈
    • 한국항해항만학회지
    • /
    • 제35권10호
    • /
    • pp.785-791
    • /
    • 2011
  • 본 논문에서는 소형 선박용 관성측정장치(Inertial Measurement Unit, IMU) 개발에 적합한 MEMS(Micro-Electro Mechanical System) 기반의 관성 센서 평가와 선정에 관하여 기술했다. 먼저, 오일러 공식에 기초한 관성 센서의 오차 모델과 잡음 모델을 정의하고, 앨런 분산(Allan Variance) 기법과 몬테카르로(Monte Carlo) 시뮬레이션 기법을 도입하여 관성 센서를 평가하였다. ADIS16405, SAR10Z, SAR100Grade100, LIS344ALH, ADXL103 등 다섯 가지 관성 센서에 대한 평가결과, ADIS16405의 자이로와 가속도계를 조합한 경우 오차가 가장 작게 나타났는데, 600 초 경과시 속도 오차의 표준편차가 약 160 m/s, 위치 오차의 표준편차가 약 35 km로 나타났다. 평가를 통해 ADIS16405 관성 센서가 IMU 구축에 최적임을 알았고, 이러한 오차 감소 방법에 대해서 참고문헌을 조사하여 검토하였다.

AUV의 운동계측을 위한 스트랩-다운형 관성계측장치(IMU)의 개발 (A Strap-Down Inertial Measuring Unit for Motion Measurement of an AUV)

  • 이판묵;전봉환;이종식;오준호;김도현
    • 한국해양공학회지
    • /
    • 제11권1호
    • /
    • pp.96-96
    • /
    • 1997
  • This paper presents a Inertial Measuring Unit(IMU) for motion measurement of an AUV. The IMU is composed of three parts: inertial sensors with three servo accelerometers and three rate gyros, an analog/digital interface board, and a signal processing board with TMS320C31 DSP processor. The IMU is a class of strap-down inwetial navigation system does not applicable directly to the navigation system in consequence of the AUV and integrated sensors for an integrated navigation system of the AUV. Fast calculstion of direction cosine matrix for the coordinate transformation body to reference is obtained through the DSP processor. A switching algotrithm is used to lessen the low frequency drift effect of the gyros in the vertical plane with use of low pass filtering of the signal of the accelerometers.

공중항법을 위한 GPS/INS 비행시험 (Flight Test of GPS/INS Navigation System for Air Navigation)

  • 유창선;안이기;임철호;이상정;남기욱;남기욱
    • 한국항공운항학회지
    • /
    • 제10권1호
    • /
    • pp.35-44
    • /
    • 2002
  • Inertial Navigation System(INS) has been used in the field of air navigation for a long time but is not popular in general aviation due to high price. Recently low-price GPS is available but vulnerable to radio interference. As an alternative on these problems, GPS/INS integrated navigation system has been considered. GPS/INS is capable of implementing navigation with low-price inertial sensors but its accuracy is dependent upon how much drift of INS may be calibrated by using GPS. In order to apply GPS/INS to air navigation, it must be investigated how long drift of INS in case of no GPS aiding will be bounded within requirements for safe flight. From the above motivation, the flight test for GPS/INS navigation system was conducted in order to make sense its performance in air navigation and its result was shown.

  • PDF

자율무인잠수정의 지형참조항법 연구 (Terrain Referenced Navigation for Autonomous Underwater Vehicles)

  • 목성훈;방효충;권재현;유명종
    • 제어로봇시스템학회논문지
    • /
    • 제19권8호
    • /
    • pp.702-708
    • /
    • 2013
  • Underwater TRN (Underwater Terrain Referenced Navigation) estimates an underwater vehicle state by measuring a distance between the vehicle and undersea terrain, and comparing it with the known terrain database. TRN belongs to absolute navigation methods, which are used to compensate a drift error of dead reckoning measurements such as IMU (Inertial Measurement Unit) or DVL (Doppler Velocity Log). However, underwater TRN is different to other absolute methods such as USBL (Ultra-Short Baseline) and LBL (Long Baseline), because TRN is independent of the external environment. As a magnetic-field-based navigation, TRN is a kind of geophysical navigation. This paper develops an EKF (Extended Kalman Filter) formulation for underwater TRN. A filter propagation part is composed by an inertial navigation system, and a filter update is executed with echo-sounder measurement. For large-initial-error cases, an adaptive EKF approach is also presented, to keep the filter be stable. At the end, simulation studies are given to verify the performance of the proposed TRN filter. With simplified sensor and terrain database models, the simulation results show that the underwater TRN could support conventional underwater navigation methods.