• Title/Summary/Keyword: Inertial Navigation system

Search Result 452, Processing Time 0.024 seconds

Effects on Localization by the Period Variation of Measured Position (위치인식 신호획득 주기변화에 의한 위치추정값 영향)

  • Shin, Changjoo;Kwon, Osoon;Seo, Jungmin;Kang, Hyoun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.23-28
    • /
    • 2019
  • A track type underwater construction robot(URI-R) which can trench on seabed is being developed by Korea Institute of Ocean Science & Technology. During the underwater trenching work, the robot is exposed high intensive noise and vibration so the underwater localization signal may not be obtained properly by the acoustic tracking system. Therefore it is necessary to research about continuous localization even though the measured position signal comes in intermittently. In this paper, the experiments were carried out on land to simulated the underwater operating environment characteristics. To estimate its position, inertial navigation system and global navigation satellite system are used. The effects of the period variation while localizing is investigated by the experiments, and the application for URI-R is proposed.

Estimation of vehicle cornering stiffness via GPS/INS

  • Park, Gun-Hong;Chang, Yu-Shin;Ryu, Jae-Heon;Jeong, Seung-Gweon;Song, Hyo-Shin;Park, Seok-Hyun;Lee, Chun-Han;Hong, Sin-Pyo;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1706-1709
    • /
    • 2003
  • This paper demonstrates a unique method for measuring vehicle states such as body sideslip angle and tire sideslip angle using Global Positioning System(GPS) velocity information in conjunction with other sensors. A method for integrating Inertial Navigation System (INS) sensors with GPS measurements to provide higher update rate estimates of the vehicle states is presented, and the method can be used to estimate the tire cornering stiffness. The experimental results for the GPS velocity-based sideslip angle measurement. From the experimental results, it can be concluded that the proposed method has an advantage for future implementation in a vehicle safety system.

  • PDF

A Study on the GPS/INS Integration and GPS Compensation Algorithm Based on the Particle Filter (파티클 필터를 이용한 GPS 위치보정과 GPS/INS 센서 결합에 관한 연구)

  • Jeong, Jae Young;Kim, Han Sil
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.267-275
    • /
    • 2013
  • EKF has been widely used for GPS/INS integration as standard method but EKF has one well-known drawback. if the errors are not within the bounded region, the filter may be divergent. The particle filter has the advantage of the nonlinear and non-gaussian system. This paper proposes a method for compensating the GPS position errors based on the particle filter and presents loosely-coupled GPS/INS integration using proposed algorithm. We used GPS position pattern with particle filter and added attitude kalman filter for improving attitude accuracy. To verify the performance, the proposed method is compared with high cost GPS as reference. In the experimental result, we verified that the accuracy and robust were well improved by the proposed method filter effectively and robustness than by original loosely-coupled integration when vehicle turns at corner.

The Accuracy analysis of Dead Reckoning and RFID based Positioning System (추측항법과 RFID 기반의 위치결정 시스템의 정확도 분석)

  • Kim, Jung-Hwan;Heo, Joon;Sohn, Hong-Gyoo;Yun, Kong-Hyun
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.390-394
    • /
    • 2007
  • 시간과 장소에 구애받지 않고 실시간으로 정보를 전달받을 수 있는 유비쿼터스 시대가 도래함에 있어서 실시간으로 움직이는 대상물의 위치를 알아내는 기술은 가장 근본적이며 필수적인 요소라 할 수 있다. 추측항법(Dead Reckoning)은 움직이는 대상물에 외부의 도움 없이 자신의 방향각과 가속도, 시간을 관측할 수 있는 관성항법장치(Inertial Navigation System)를 장착하여 이전의 위치 정보를 바탕으로 현재의 위치를 관측하는 방법이다. 또한 RFID(Radio Frequency IDentification)는 이러한 유비쿼터스 근거리무선통신의 핵심 기술로서 본 논문에서는 RFID에 기반한 위치 결정 시스템에 실시간 변화하는 대상물의 위치를 예측하기 위해 추측항법과 칼만필터(Kalman-filter)의 개념을 적용시켰다. 또한 RMSE(Root Mean Square Error)값을 통해 칼만필터의 적용에 따른 정확도의 향상과 각 디자인 요소들의 변화에 따라 위치의 정확도가 어떠한 변화를 갖는지를 분석하였다. 시뮬레이션 결과 칼만필터를 적용했을 때 이전보다 RMSE값이 현저히 작아지는 결과를 통해 위치의 정확도가 크게 향상되는 것을 확인하였다. 또한 RFID의 탐지 범위는 정확도에 큰 영향을 미칠 수 있는 주된 요소가 아니며, RFID 탐지 범위의 표준편차가 작을수록 위치 정확도는 높아지고, RFID 태그의 탐지 확률이 높을수록 RMSE 값의 변동이 작은 안정된 시스템을 갖으며 위치의 정확도 또한 높아진다는 것을 확인하였다.

  • PDF

Unmanned Aerial Vehicle Recovery Using a Simultaneous Localization and Mapping Algorithm without the Aid of Global Positioning System

  • Lee, Chang-Hun;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.98-109
    • /
    • 2010
  • This paper deals with a new method of unmanned aerial vehicle (UAV) recovery when a UAV fails to get a global positioning system (GPS) signal at an unprepared site. The proposed method is based on the simultaneous localization and mapping (SLAM) algorithm. It is a process by which a vehicle can build a map of an unknown environment and simultaneously use this map to determine its position. Extensive research on SLAM algorithms proves that the error in the map reaches a lower limit, which is a function of the error that existed when the first observation was made. For this reason, the proposed method can help an inertial navigation system to prevent its error of divergence with regard to the vehicle position. In other words, it is possible that a UAV can navigate with reasonable positional accuracy in an unknown environment without the aid of GPS. This is the main idea of the present paper. Especially, this paper focuses on path planning that maximizes the discussed ability of a SLAM algorithm. In this work, a SLAM algorithm based on extended Kalman filter is used. For simplicity's sake, a blimp-type of UAV model is discussed and three-dimensional pointed-shape landmarks are considered. Finally, the proposed method is evaluated by a number of simulations.

Backstepping-Based Control of a Strapdown Boatboard Camera Stabilizer

  • Setoodeh, Peyman;Khayatian, Alireza;Farjah, Ebrahim
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.15-23
    • /
    • 2007
  • In surveillance, monitoring, and target tracking operations, high-resolution images should be obtained even if the target is in a far distance. Frequent movements of vehicles such as boats degrade the image quality of onboard camera systems. Therefore, stabilizer mechanisms are required to stabilize the line of sight of boatboard camera systems against boat movements. This paper addresses design and implementation of a strapdown boatboard camera stabilizer. A two degree of freedom(DOF)(pan/tilt) robot performs the stabilization task. The main problem is divided into two subproblems dealing with attitude estimation and attitude control. It is assumed that exact estimate of the boat movement is available from an attitude estimation system. Estimates obtained in this way are carefully transformed to robot coordinate frame to provide desired trajectories, which should be tracked by the robot to compensate for the boat movements. Such a practical robotic system includes actuators with fast dynamics(electrical dynamics) and has more degrees of freedom than control inputs. Backstepping method is employed to deal with this problem by extending the control effectiveness.

Initial Alignment Algorithm for the SDINS Using an Attitude Determination GPS Receiver (자세 측정용 GPS 수신기를 이용한 SDINS의 초기정렬 알고리즘)

  • Kim, Young-Sun;Oh, Sang-Heon;Hwang, Dong-Hwan;Lee, Sang-Jeong;Jeon, Chang-Bae;Song, Ki-Won;Park, Chan-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.249-255
    • /
    • 2002
  • Since the stationary alignment process of the SDINS is not completely observable, some furls of the aided alignment have been applied. The purpose of this paper is to propose a new initial alignment algorithm, which utilizes the attitude output from the AGPS(Attitude Determination GPS) receiver and to demonstrate the feasibility of the proposed algorithm with several experimental results. A Kalman filter is designed for utilizing the attitude output as well as the zero velocity information. Also analyzed is the observability of the SDINS error model. To show the feasibility of the proposed scheme, we implement an alignment system where HG1700AE IMU (Inertial Measurement Unit) from Honeywell and an AGPS receiver designed at Chungnam National University are used. Test trials are done to evaluate the performance of the proposed alignment scheme. The proposed algorithm provides as good initial alignment performance as a high accurate navigation system, MAPS(Modular Azimuth Positioning System) INS.

Design of SDINS Rapid Initial Alignment Technique Robust to the Pyro-shock in Multi-Launch Rocket System (연속발사 충격에 강인한 SDINS 신속 초기정렬기법 설계)

  • Lee, Hyung-Sub;Han, Kyung-Jun;Lee, Sang-Woo;Yu, Myeong-Jong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1038-1044
    • /
    • 2016
  • In this paper, a SDINS(Strapdown Inertial Navigation System) rapid initial alignment technique robust to the pyro-shock in multi-launch rocket system is proposed. The proposed method consists of three steps. Firth, transfer alignment is performed to estimate misalignment between MINS(Master INS) and SINS(Slave INS), and the estimated misalignment is written in the memory when transfer alignment is completed. Next, the pre-filtering process is performed to get rid of the acceleration error induced by launcher vibration. Finally, the horizontal alignment is performed to compensate misalignment variation caused by pyro-shock. We verified the performance of the proposed alignment method comparing with the conventional transfer alignment method. The simulation shows that the proposed initial alignment technique improves alignment performance.

Analysis of Factors Affecting Performance of Integrated INS/SPR Positioning during GPS Signal Blockage

  • Kang, Beom Yeon;Han, Joong-hee;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.6
    • /
    • pp.599-606
    • /
    • 2014
  • Since the accuracy of Global Positioning System (GPS)-based vehicle positioning system is significantly degraded or does not work appropriately in the urban canyon, the integration techniques of GPS with Inertial Navigation System (INS) have intensively been developed to improve the continuity and reliability of positioning. However, its accuracy is degraded as INS errors are not properly corrected due to the GPS signal blockage. Recently, the image-based positioning techniques have been started to apply for the vehicle positioning for the advanced in processing techniques as well as the increased the number of cars installing the camera. In this study, Single Photo Resection (SPR), which calculates the camera exterior orientation parameters using the Ground Control Points (GCPs,) has been integrated with the INS/GPS for continuous and stable positioning. The INS/GPS/SPR integration was implemented in both of a loosely and a tightly coupled modes, based on the Extended Kalman Filter (EKF). In order to analyze the performance of INS/SPR integration during the GPS outage, the simulation tests were conducted with a consideration of factors affecting SPR performance. The results demonstrate that the accuracy of INS/SPR integration is depended on magnitudes of the GCP errors and SPR processing intervals. Additionally, the simulation results suggest some required conditions to achieve accurate and continuous positioning, used the INS/SPR integration.

Precision Analysis of NARX-based Vehicle Positioning Algorithm in GNSS Disconnected Area

  • Lee, Yong;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.5
    • /
    • pp.289-295
    • /
    • 2021
  • Recently, owing to the development of autonomous vehicles, research on precisely determining the position of a moving object has been actively conducted. Previous research mainly used the fusion of GNSS/IMU (Global Positioning System / Inertial Navigation System) and sensors attached to the vehicle through a Kalman filter. However, in recent years, new technologies have been used to determine the location of a moving object owing to the improvement in computing power and the advent of deep learning. Various techniques using RNN (Recurrent Neural Network), LSTM (Long Short-Term Memory), and NARX (Nonlinear Auto-Regressive eXogenous model) exist for such learning-based positioning methods. The purpose of this study is to compare the precision of existing filter-based sensor fusion technology and the NARX-based method in case of GNSS signal blockages using simulation data. When the filter-based sensor integration technology was used, an average horizontal position error of 112.8 m occurred during 60 seconds of GNSS signal outages. The same experiment was performed 100 times using the NARX. Among them, an improvement in precision was confirmed in approximately 20% of the experimental results. The horizontal position accuracy was 22.65 m, which was confirmed to be better than that of the filter-based fusion technique.