• 제목/요약/키워드: Inertial Navigation system

검색결과 453건 처리시간 0.031초

스트랩다운 관성항법시스템의 가속도 변환 알고리즘 (An acceleration transformation algorithm for strapdown inertial navigation system)

  • 김광진;김정환;백양식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1671-1674
    • /
    • 1997
  • In tihs paper, an acceleratiion transformation algorithm which compensates the sculling error is proposed for strapdown inertial navigation system. The algorithm utilize the corss-product of the acceleromenter outputs and gyro outputs to keep the accuracy of the vehicle velocity under high frequency dynamic motion. From the error analysis of the algorithm, it is shown that the magnitude of estimation error is reduced by four orders.

  • PDF

스트랩다운 관성항법시스템의 정지시 균일 관측 가능성 및 오차 특성 분석 (The uniform observability and the error characteristics for stationary strapdown inertial navigation system)

  • 정도형;박찬국;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.676-679
    • /
    • 1996
  • In this paper, the uniform observability and the error characteristics for stationary SDINS error are analyzed. The use of the Lyapunov transformation is proposed for transforming te conventional SDINS error model and the sufficient conditions for the uniform observability of SDINS error model are analytically derived. A complete characterization for the SDINS error characteristics during two position alignment is presented which allows us to predict the performance of two position alignment in SDINS.

  • PDF

강인필터를 이용한 전달정렬 알고리즘 (Transfer Alignment Algorithm using Robust filter)

  • 양철관;심덕선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.26-26
    • /
    • 2000
  • We study on the velocity matching algorithm for transfer alignment of inertial navigation system(INS) using robust H$_2$ filter. We suggest an uncertainty model for INS and apply the suggested discrete robust H$_2$ filter to the uncertainty model compared with kalman filter, the discrete robust H$_2$ filter is shown by simulation to have good performance of alignment time and accuracy.

  • PDF

과학로켓 관성항범장치의 V/F 변환기 설계 및 오차보상기법 (V/F Converter Design and Error Compensation of KSR-III Inertial Navigation System)

  • 김천중;조현철;노웅래;김동승
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.31-31
    • /
    • 2000
  • In this paper, Ive design and test the V/F converter for KSR-III INS using commertial INC, VFC110, AD652. The test result shows that performance of AD652 is better than that of VFC110. Through the calibration of V/F converter, we show that the designed V/F converter has a good performance and is usable for KSR-III.

  • PDF

관성센서의 이중 고장을 고려한 고장 검출 및 분리 (FDI considering Two Faults of Inertial Sensors)

  • 김광훈;박찬국;이장규
    • 제어로봇시스템학회논문지
    • /
    • 제10권1호
    • /
    • pp.1-9
    • /
    • 2004
  • Inertial navigation system with hardware redundancy must use FDI(Fault Detection and Isolation) method to remove the influence of faulty sensors. Until now, several FDI methods such as PSA(Parity Space Approach), GLT(Generalized Likelihood ratio Test) and OPT(Optimal Parity vector Test) method are generally used. However, because these FDI methods only consider the situation that the system has one faulty sensor, these methods cannot be directly adapted for the system with two faulty sensors. To solve this problem, in this paper, PSA method is analyzed and based on this result, new FDI method called EPSA is proposed to consider a detection and an isolation of two faulty sensors in inertial navigation system.

관성항법장치의 실시간 모의를 위한 RTX기반의 MILS S/W 개발 (The Development of MILS Software based on RTX for Real-time Imitation of an Inertial Navigation System)

  • 김기표;최진호;안기현;우덕영
    • 한국군사과학기술학회지
    • /
    • 제14권3호
    • /
    • pp.353-358
    • /
    • 2011
  • In this paper, we have introduced a Missile In the Loop Simulation(MILS) Software developed for the missile ground test, which is based on a commercial hard real-time operating system(OS) on Windows platform called as Real-Time eXtension(RTX). MILS software makes it possible to test overall system functions of a integrated missile on the ground in the flight conditions by real-time imitating its inertial data. By means of MILS, we have performed missiles ground tests, which result in successful real flight tests.

농업기계 내비게이션을 위한 INS/GPS 통합 연구 (Study on INS/GPS Sensor Fusion for Agricultural Vehicle Navigation System)

  • 노광모;박준걸;장영창
    • Journal of Biosystems Engineering
    • /
    • 제33권6호
    • /
    • pp.423-429
    • /
    • 2008
  • This study was performed to investigate the effects of inertial navigation system (INS) / global positioning system (GPS) sensor fusion for agricultural vehicle navigation. An extended Kalman filter algorithm was adopted for INS/GPS sensor fusion in an integrated mode, and the vehicle dynamic model was used instead of the navigation state error model. The INS/GPS system was consisted of a low-cost gyroscope, an odometer and a GPS receiver, and its performance was tested through computer simulations. When measurement noises of GPS receiver were 10, 1.0, 0.5, and 0.2 m ($1{\sigma}$), RMS position and heading errors of INS/GPS system at 5 m/s straight path were remarkably reduced with 10%, 35%, 40%, and 60% of those obtained from the GPS receiver, respectively. The decrease of position and heading errors by using INS/GPS rather than stand-alone GPS can provide more stable steering of agricultural equipments. Therefore, the low-cost INS/GPS system using the extended Kalman filter algorithm may enable the self-autonomous navigation to meet required performance like stable steering or more less position errors even in slow-speed operation.

영상유도수술을 위한 광학추적 센서 및 관성항법 센서 네트웍의 칼만필터 기반 자세정보 융합 (Kalman Filter Baded Pose Data Fusion with Optical Traking System and Inertial Navigation System Networks for Image Guided Surgery)

  • 오현민;김민영
    • 전기학회논문지
    • /
    • 제66권1호
    • /
    • pp.121-126
    • /
    • 2017
  • Tracking system is essential for Image Guided Surgery(IGS). Optical Tracking System(OTS) is widely used to IGS for its high accuracy and easy usage. However, OTS doesn't work when occlusion of marker occurs. In this paper sensor data fusion with OTS and Inertial Navigation System(INS) is proposed to solve this problem. The proposed system improves the accuracy of tracking system by eliminating gaussian error of the sensor and supplements the disadvantages of OTS and IMU through sensor fusion based on Kalman filter. Also, sensor calibration method that improves the accuracy is introduced. The performed experiment verifies the effectualness of the proposed algorithm.

GNSS 부분 음영 지역에서 마할라노비스 거리를 이용한 GNSS/다중 IMU 센서 기반 측위 알고리즘 (GNSS/Multiple IMUs Based Navigation Strategy Using the Mahalanobis Distance in Partially GNSS-denied Environments)

  • 김지연;송무근;김재훈;이동익
    • 대한임베디드공학회논문지
    • /
    • 제17권4호
    • /
    • pp.239-247
    • /
    • 2022
  • The existing studies on the localization in the GNSS (Global Navigation Satellite System) denied environment usually exploit low-cost MEMS IMU (Micro Electro Mechanical Systems Inertial Measurement Unit) sensors to replace the GNSS signals. However, the navigation system still requires GNSS signals for the normal environment. This paper presents an integrated GNSS/INS (Inertial Navigation System) navigation system which combines GNSS and multiple IMU sensors using extended Kalman filter in partially GNSS-denied environments. The position and velocity of the INS and GNSS are used as the inputs to the integrated navigation system. The Mahalanobis distance is used for novelty detection to detect the outlier of GNSS measurements. When the abnormality is detected in GNSS signals, GNSS data is excluded from the fusion process. The performance of the proposed method is evaluated using MATLAB/Simulink. The simulation results show that the proposed algorithm can achieve a higher degree of positioning accuracy in the partially GNSS-denied environment.

삼중 차분 기법을 이용한 AGPS/INS 통합 항법 시스템 설계 (The AGPS/INS Integrated Navigation System Design Using Triple Difference Technique)

  • 오상헌;박찬식;이상정;황동환
    • 제어로봇시스템학회논문지
    • /
    • 제9권9호
    • /
    • pp.736-744
    • /
    • 2003
  • The GPS attitude output or carrier phase observables can be effectively utilized to compensate the attitude error of the strapdown inertial navigation system. However, when the integer ambiguity is not correctly resolved and/or a cycle slip occurs, an erroneous GPS output can be obtained. If the erroneous GPS information is directly applied to the AGPS/INS integration system, the performance of the system can be rapidly degraded. This paper proposes an AGPS/INS integration system using the triple difference carrier phase observables. The proposed integration system contains a cycle slip detection algorithm, in which inertial information is combined. Computer simulations and van test were performed to verify the proposed integration system. The results show that the proposed system gives an accurate and reliable navigation solution even when the integer ambiguity is not correct and the cycle slip occurs.