• 제목/요약/키워드: Inertial Energy

검색결과 90건 처리시간 0.024초

관성에 따른 소결마찰재와 제동디스크간 마찰특성 연구 (Influence of Inertial Mass on Tribological Characteristics between Sintered Friction Material and Disk)

  • 이종성;강부병;이희성
    • Tribology and Lubricants
    • /
    • 제29권2호
    • /
    • pp.98-104
    • /
    • 2013
  • Cu-matrix-sintered brake pads and heat-resistant low-alloy steel are commonly applied to basic brake systems in high-energy moving machines. We analyzed how the tribological characteristics are influenced by the inertial mass. A high inertial mass decreased the friction coefficient by about 15% compared to a low inertial mass under all velocity conditions. The wear rates of the friction materials increased with the inertial mass. Thus, the inertial mass influences the friction coefficient and wear rate of the friction materials and disk but not the friction stability.

Inertial Control of a DFIG-based Wind Power Plant using the Maximum Rate of Change of Frequency and the Frequency Deviation

  • Lee, Hyewon;Kim, Jinho;Hur, Don;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.496-503
    • /
    • 2015
  • In order to let a wind generator (WG) support the frequency control of a power system, a conventional inertial control algorithm using the rate of change of frequency (ROCOF) and frequency deviation loops was suggested. The ROCOF loop is prevailing at the initial stage of the disturbance, but the contribution becomes smaller as time goes on. Moreover, its contribution becomes negative after the frequency rebound. This paper proposes an inertial control algorithm of a wind power plant (WPP) using the maximum ROCOF and frequency deviation loops. The proposed algorithm replaces the ROCOF loop in the conventional inertial control algorithm with the maximum ROCOF loop to retain the maximum value of the ROCOF and eliminate the negative effect after the frequency rebound. The algorithm releases more kinetic energy both before and after the frequency rebound and increases the frequency nadir more than the conventional ROCOF and frequency loops. The performance of the algorithm was investigated under various wind conditions in a model system, which includes a doubly-fed induction generator-based WPP using an EMTP-RV simulator. The results indicate that the algorithm can improve the frequency drop for a disturbance by releasing more kinetic energy.

입구 습도 변화에 따른 관성 충돌 방식의 액적 분리장치의 수분제거효율 변화 (Removal Efficiency of Water Contents using Inertial Impaction Separator with Change in Relative Humidity)

  • 송동근;이신영;홍원석;신완호;김규진;김한석
    • 한국입자에어로졸학회지
    • /
    • 제9권4호
    • /
    • pp.247-252
    • /
    • 2013
  • Removal of water contents in a gas is needed in industrial field of gas processing related on energy production/conversion, and environmental treatment. Inertial separators are economic devices for separating droplets from the gas stream. For design and incorporation of inertial pre-treatment separator, characteristics of removal of water contents with various operation conditions are needed. In this study, removal efficiency of water droplets at various flowrates (5-14 SCMM) and relative humidity (R.H.) conditions (40%, and 90%) has been investigated. At low R.H. condition, the removal characteristic is similar to the removal of solid particles. But, droplet growth resulting from the condensation of water vapor at high R.H. condition, is significant and it made increase in removal efficiency of droplet phase of water contents. For rapid removal of water contents, an effective method to enhancing condensation growth of water droplets is highly needed.

관성/확산필터를 이용한 나노입자의 분류기술 연구 (Classification of Nanoparticles by Inertial/Diffusion Filter)

  • 김용구;이상열;김한나;노학재;봉춘근;김대성
    • 한국입자에어로졸학회지
    • /
    • 제11권2호
    • /
    • pp.29-36
    • /
    • 2015
  • The purpose of this research is to find out the collection property of nanoparticle in diffusion filter to know particle size dispersion of nanomaterial using inertial force and principle of Brownian diffusion motion. We used inertial filters which are two different type and diffusion filters made by various kinds of Wiremesh and the different pieces of filter to compare with particle size distribution using NaCl particles. Finally, We made a conclusion as follows : (1) the bigger available charging volume is and the larger specific surface area of inertial filter is, the better collection efficiency is. (2) The higher wire-mesh number of filter is, the more collection efficiency of small particle is increasing because the wire of the higher Wiremesh number filter is thinner and denser. (3) The more pieces of wire-mesh filter, the more collection efficiency is increasing because it makes the residence time longer.

가상 현실 어플리케이션을 위한 관성과 시각기반 하이브리드 트래킹 (Hybrid Inertial and Vision-Based Tracking for VR applications)

  • 구재필;안상철;김형곤;김익재;구열회
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 A
    • /
    • pp.103-106
    • /
    • 2003
  • In this paper, we present a hybrid inertial and vision-based tracking system for VR applications. One of the most important aspects of VR (Virtual Reality) is providing a correspondence between the physical and virtual world. As a result, accurate and real-time tracking of an object's position and orientation is a prerequisite for many applications in the Virtual Environments. Pure vision-based tracking has low jitter and high accuracy but cannot guarantee real-time pose recovery under all circumstances. Pure inertial tracking has high update rates and full 6DOF recovery but lacks long-term stability due to sensor noise. In order to overcome the individual drawbacks and to build better tracking system, we introduce the fusion of vision-based and inertial tracking. Sensor fusion makes the proposal tracking system robust, fast, accurate, and low jitter and noise. Hybrid tracking is implemented with Kalman Filter that operates in a predictor-corrector manner. Combining bluetooth serial communication module gives the system a full mobility and makes the system affordable, lightweight energy-efficient. and practical. Full 6DOF recovery and the full mobility of proposal system enable the user to interact with mobile device like PDA and provide the user with natural interface.

  • PDF

Experimental evaluation of an inertial mass damper and its analytical model for cable vibration mitigation

  • Lu, Lei;Fermandois, Gaston A.;Lu, Xilin;Spencer, Billie F. Jr.;Duan, Yuan-Feng;Zhou, Ying
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.589-613
    • /
    • 2019
  • Cables are prone to vibration due to their low inherent damping characteristics. Recently, negative stiffness dampers have gained attentions, because of their promising energy dissipation ability. The viscous inertial mass damper (termed as VIMD hereinafter) can be viewed as one realization of the inerter. It is formed by paralleling an inertial mass part with a common energy dissipation element (e.g., viscous element) and able to provide pseudo-negative stiffness properties to flexible systems such as cables. A previous study examined the potential of IMD to enhance the damping of stay cables. Because there are already models for common energy dissipation elements, the key to establish a general model for IMD is to propose an analytical model of the rotary mass component. In this paper, the characteristics of the rotary mass and the proposed analytical model have been evaluated by the numerical and experimental tests. First, a series of harmonic tests are conducted to show the performance and properties of the IMD only having the rotary mass. Then, the mechanism of nonlinearities is analyzed, and an analytical model is introduced and validated by comparing with the experimental data. Finally, a real-time hybrid simulation test is conducted with a physical IMD specimen and cable numerical substructure under distributed sinusoidal excitation. The results show that the chosen model of the rotary mass part can provide better estimation on the damper's performance, and it is better to use it to form a general analytical model of IMD. On the other hand, the simplified damper model is accurate for the preliminary simulation of the cable responses.

Observation of Semi-diurnal Internal Tides and Near-inertial Waves at the Shelf Break of the East China Sea

  • Park, Jae-Hun;Lie, Heung-Jae;Guo, Binghuo
    • Ocean and Polar Research
    • /
    • 제33권4호
    • /
    • pp.409-419
    • /
    • 2011
  • Semi-diurnal internal tides and near-inertial waves are investigated using moored current meter measurements at four sites along the shelf break of the East China Sea during August 1987 and May-June 1988. Each mooring is equipped with four current meters spanning from near surface to near bottom. Spectral analyses of all current data reveal dominant spectra at the semi-diurnal frequency band, where the upper and lower current measurements show out-of-phase relationship between them with significant coherences. These are consistent with typical characteristics of the first-mode semi-diurnal internal tide. Strong intensification of the near-bottom baroclinic currents is observed only at one site, where the ratio of the bottom slope to the slope of the internal-wave characteristics at the semi-diurnal frequency is close to unity. An energetic near-inertial wave event is observed during the first half of May-June 1988 observation at two mooring sites. Rotary spectra reveal that the most dominant signal is clockwise rotating motion at the near-inertial frequency band. Upward phase and downward energy propagations, shown in time-depth contour plots of near-inertial bandpass filtered currents, are confirmed by cross correlations between the upper- and lower-layer current measurements. The upward-propagating phase speed is estimated to be about 0.13 cm $s^{-1}$ at both sites. Significant coherences and in-phase relationships of near-inertial currents at the same or similar depths between the two sites are observed in spite of their long distance of about 110 km.

Impact of cable sag on the efficiency of an inertial mass damper in controlling stay cable vibrations

  • Wang, Zhi-hao;Gao, Hui;Xu, Yan-wei;Chen, Zheng-qing;Wang, Hao
    • Smart Structures and Systems
    • /
    • 제24권1호
    • /
    • pp.83-94
    • /
    • 2019
  • Passive negative stiffness dampers (NSDs) that possess superior energy dissipation abilities, have been proved to be more efficient than commonly adopted passive viscous dampers in controlling stay cable vibrations. Recently, inertial mass dampers (IMDs) have attracted extensive attentions since their properties are similar to NSDs. It has been theoretically predicted that superior supplemental damping can be generated for a taut cable with an IMD. This paper aims to theoretically investigate the impact of the cable sag on the efficiency of an IMD in controlling stay cable vibrations, and experimentally validate superior vibration mitigation performance of the IMD. Both the numerical and asymptotic solutions were obtained for an inclined sag cable with an IMD installed close to the cable end. Based on the asymptotic solution, the cable attainable maximum modal damping ratio and the corresponding optimal damping coefficient of the IMD were derived for a given inertial mass. An electromagnetic IMD (EIMD) with adjustable inertial mass was developed to investigate the effects of inertial mass and cable sag on the vibration mitigation performance of two model cables with different sags through series of first modal free vibration tests. The results show that the sag generally reduces the attainable first modal damping ratio of the cable with a passive viscous damper, while tends to increase the cable maximum attainable modal damping ratio provided by the IMD. The cable sag also decreases the optimum damping coefficient of the IMD when the inertial mass is less than its optimal value. The theoretically predicted first modal damping ratio of the cable with an IMD, taking into account the sag generally, agrees well with that identified from experimental results, while it will be significantly overestimated with a taut-cable model, especially for the cable with large sag.

Dynamic Droop-based Inertial Control of a Wind Power Plant

  • Hwang, Min;Chun, Yeong-Han;Park, Jung-Wook;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1363-1369
    • /
    • 2015
  • The frequency of a power system should be maintained within the allowed limits for stable operation. When a disturbance such as generator tripping occurs in a power system, the frequency is recovered to the nominal value through the inertial, primary, and secondary responses of the operating synchronous generators (SGs). However, for a power system with high wind penetration, the system inertia will decrease significantly because wind generators (WGs) are operating decoupled from the power system. This paper proposes a dynamic droop-based inertial control for a WG. The proposed inertial control determines the dynamic droop depending on the rate of change of frequency (ROCOF). At the initial period of a disturbance, where the ROCOF is large, the droop is set to be small to release a large amount of the kinetic energy (KE) and thus the frequency nadir can be increased significantly. However, as times goes on, the ROCOF will decrease and thus the droop is set to be large to prevent over-deceleration of the rotor speed of a WG. The performance of the proposed inertial control was investigated in a model system, which includes a 200 MW wind power plant (WPP) and five SGs using an EMTP-RV simulator. The test results indicate that the proposed scheme improves the frequency nadir significantly by releasing a large amount of the KE during the initial period of a disturbance.

$H_{\infty}$ filter for flexure deformation and lever arm effect compensation in M/S INS integration

  • Liu, Xixiang;Xu, Xiaosu;Wang, Lihui;Li, Yinyin;Liu, Yiting
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권3호
    • /
    • pp.626-637
    • /
    • 2014
  • On ship, especially on large ship, the flexure deformation between Master (M)/Slave (S) Inertial Navigation System (INS) is a key factor which determines the accuracy of the integrated system of M/S INS. In engineering this flexure deformation will be increased with the added ship size. In the M/S INS integrated system, the attitude error between MINS and SINS cannot really reflect the misalignment angle change of SINS due to the flexure deformation. At the same time, the flexure deformation will bring the change of the lever arm size, which further induces the uncertainty of lever arm velocity, resulting in the velocity matching error. To solve this problem, a $H_{\infty}$ algorithm is proposed, in which the attitude and velocity matching error caused by deformation is considered as measurement noise with limited energy, and measurement noise will be restrained by the robustness of $H_{\infty}$ filter. Based on the classical "attitude plus velocity" matching method, the progress of M/S INS information fusion is simulated and compared by using three kinds of schemes, which are known and unknown flexure deformation with standard Kalman filter, and unknown flexure deformation with $H_{\infty}$ filter, respectively. Simulation results indicate that $H_{\infty}$ filter can effectively improve the accuracy of information fusion when flexure deformation is unknown but non-ignorable.