• Title/Summary/Keyword: Inertia of liquid

Search Result 42, Processing Time 0.033 seconds

Moment of inertia of liquid in a tank

  • Lee, Gyeong Joong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.132-150
    • /
    • 2014
  • In this study, the inertial properties of fully filled liquid in a tank were studied based on the potential theory. The analytic solution was obtained for the rectangular tank, and the numerical solutions using Green's 2nd identity were obtained for other shapes. The inertia of liquid behaves like solid in recti-linear acceleration. But under rotational acceleration, the moment of inertia of liquid becomes small compared to that of solid. The shapes of tank investigated in this study were ellipse, rectangle, hexagon, and octagon with various aspect ratios. The numerical solutions were compared with analytic solution, and an ad hoc semi-analytical approximate formula is proposed herein and this formula gives very good predictions for the moment of inertia of the liquid in a tank of several different geometrical shapes. The results of this study will be useful in analyzing of the motion of LNG/LPG tanker, liquid cargo ship, and damaged ship.

Effects of Liquid Fuel on Spacecraft's Moment of Inertia and Motion during Reorientation (방향전환 기동 시 액체연료가 위성체의 관성모멘트 및 자세운동에 미치는 영향 분석)

  • Kang, Ja-Young;Lee, Sang-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • In this paper, reorientation based on angular momentum exchange is applied for a bias momentum stabilized satellite, which is equipped with a spherical fuel tank, and the effect of liquid slosh on the attitude properties such as inertia tensor and angular rate is investigated. In order to represent the slosh motion of liquid an equivalent mechanical model is adopted and full nonlinear equations of motion for three-body system are derived. Computer simulations are performed for several cases, which use the viscosity of liquid and the center location of the tank as input parameters, mainly in order to observe how the viscosity of liquid and the center location of the tank influence the spacecraft’s attitude. The investigation includes observing time-variations of the inertia tensor, especially presence of components of product of inertia during the maneuver.

  • PDF

A Study on Performance Analysis of Cryogenic Hydrostatic Journal Bearings : the Effects of Turbulent Flow, Pressure Drop and Variable Liquid Properties (극저온 정압 저널베어링의 성능해석에 관한 연구 : 난류유동, 압력강하, 가변 밀도 및 점도의 영향)

  • 김성기;강지훈;김경웅
    • Tribology and Lubricants
    • /
    • v.19 no.3
    • /
    • pp.139-145
    • /
    • 2003
  • In this paper, static characteristics of a cryogenic hydrostatic journal bearing which has 2-rows staggered recesses are numerically analyzed. The regime of operation of this bearing is fully turbulent with large fluid inertia effects. The turbulent lubrication equation is solved under the assumption that turbulence parameters are decided by the Reynolds numbers. Pressure drop caused by inertia effect at the recess edge is considered in this analysis. Also density and viscosity of working fluid are considered as function of only pressure. Numerical results for a cryogenic Hydrostatic journal bearing show pressure distribution, load capacity, flow rate, and recess pressure. The effects of turbulent flow, pressure drop and variable liquid properties are discussed.

Unsteady Vaporization of Burning Droplet at High Pressure Environments With Linear Acoustic Mode (강한 음향장에 구속된 고압 액적의 연소)

  • Kim, Sung-Yup;Shin, Hyun-Ho;Yoon, Woong-Sup
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1122-1127
    • /
    • 2004
  • an isolated droplet combustion exposed to pressure perturbations in stagnant gaseous environment is numerically conducted. Governing equations are solved for flow parameters at gas and liquid phases separately and thermodynamic parameters at the interfacial boundary are matched for problem closure. For high-pressure effects, vapor-liquid interfacial thermodynamics is rigorously treated. A series of parametric calculations in terms of mean pressure level and wave frequencies are carried out employing a n-pentane droplet in stagnant gaseous air. Results show that the operating pressure and driving frequency have an important role in determining the amplitude and phase lag of a combustion response. Mass evaporation rate responding to pressure waves is amplified with increase in pressure due to substantial reduction in latent heat of vaporization. Phase difference between pressure and evaporation rate decreases due to the reduced thermal inertia at high pressure. In addition to this, augmentation of perturbation frequency also enhances amplification of vaporization rate because the time period for the pressure oscillation is much smaller than the liquid thermal inertia time. The phase of evaporation rate shifts backward due to the elevated thermal inertia at high acoustic frequency.

  • PDF

Low-Frequency Pressure Fluctuations in an External-Loop Airlift Reactor (외부순환 공기부양반응기에서 낮은 주파수의 압력 변동)

  • Choi, Keun Ho
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.665-674
    • /
    • 2020
  • Low-frequency pressure fluctuations in an external-loop airlift reactor were investigated. Low-frequency pressure fluctuations could be measured by shooting videos about liquid levels in the four piezometric tubes which were installed at the lower and upper parts of the riser and downcomer using a cellular phone. The periodic characteristics of pressure fluctuations were proved by the calculation of their auto-correlation function and cross-correlation function. Even if the riser superficial gas velocity was constant, the riser and downcomer gas holdups as well as wall pressures were periodically changed due to the inertia of circulating liquid. In general, the intensity of pressure fluctuations increased with an increase in the gas velocity. When the unaerated liquid height was 0.04 m, the maximum period of pressure fluctuations was found at the specific gas velocity (0.14 ms-1). It was because the maximum inertia of circulating liquid resulted from a reduction in the increasing rate of the liquid circulation velocity and a decrease in the volume of the effectively circulating liquid with an increase in the gas velocity.

Flow Patterns of Gas-Liquid Two-phase Flow under Microgravity (미소중력하의 기액이상류의 유동양식)

  • 최부홍
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.460-465
    • /
    • 2003
  • Microgravity experiments were conducted to determine the effect of liquid and gas superficial velocities on flow behaviors. Flow behaviors observed under microgravity conditions can be classified into five flow patterns: bubble. Taylor bubble, slug, semi-annular and annular flows. Transition boundary between four flow patterns could be determined by drift-flux model. It was also found that the effect of gravity and pipe inclination on flow pattern transition was not significant in the inertia dominant region.

Gas-Liquid Two-Phase Flow at Hyper-Gravity Conditions (과중력 환경에서의 기액이상류)

  • Choi, Bu-Hong;Choi, Ju-Yeol
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.59-60
    • /
    • 2006
  • Some useful flow regime data are obtained from the experiments using the flight producing hyper-gravity(2g) conditions and on ground(1g) with the identical flow conditions. The flow regime data obtained at 1g and 2g conditions are compared with new dimensionless flow regime map using Fr, Bo and We number related with gravity, surface tension and inertia force.

  • PDF

3D-inertia Valve Component for Centrifugal Force-based Micro Fluid Control (원심력기반 3차원 관성밸브 모델링을 통한 정밀 미세유체제어)

  • Kang, Dong Hee;Kim, Na Kyong;Kang, Hyun Wook
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.12-17
    • /
    • 2021
  • A three-dimensional slope valve component is used for controlling micro volume of liquid on a centrifugal force-based microfluidic disk platform, also called a lab-on-a-disk. The modeling factor of the slope valve component is determined to centrifugal force for liquid passing the crest of a slope valve via variation of slope length and angle as well as the radius to start point of slope valve. The centrifugal force is calculated by the equilibrium equation of the capillary and gravitational forces according to the microchannel surface roughness and the liquid volume, respectively. As a result, the slope valve is analyzed by the minimum angular velocity for liquid passing at crest point and the ratio between the length of micro liquid and slope length to obtain the factors for optimal slope angle modeling.

Gas Flow through Arrays of Spheres Coated by Liquid Film (액체 막이 입혀진 구 입자 배열을 지나는 기체 흐름)

  • Koo, Sangkyun
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.646-652
    • /
    • 2009
  • Present study deals with a three phase flow problem of determining drag acting on spheres wetted by liquid flow by gas flow through the spheres in simple cubic (SC), body-center cubic (BCC) and face-centered cubic (FCC) array, respectively, when the inertia of gas is negligibly small. The liquid flow driven by gravity on the spheres is assumed to be unaffected by the countercurrent gas flow. A perturbation method coupled with a multipole expansion method is used to calculate the hydrodynamic interactions between spheres and hence determine the effect of liquid film and flow on the gas flow for each periodic array of spheres. An approximate method for evaluating the effect of the liquid film is also presented for simple estimations. It is found that the approximation results are in a reasonable agreement with the numerical calculations.

A Numerical Analysis of the Behavior of the Free Surface in a Moving Cup (이송되는 컵 내부의 자유 표면의 거동 특성에 대한 수치해석)

  • Hong, Tae-Hyub;Chae, Hee-Moon;Kim, Chyang-Nyung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2997-3002
    • /
    • 2007
  • A manipulator is operated for the motion of mechanical hands or arms by mechanical mechanism. When a cup including liquid inside is shifted by a manipulator, it is important to know how a free surface of the liquid moves. In this study, non-dimensional parameters have been found that affect the rise of the free surface in a cup moving with constant acceleration. The non-dimensional parameters are the dimensionless time, the ratio of inertia effect to vicous effect (Reynolds number), aspect ratio of the liquid inside the cup and acceleration ratio (Froude number). Through this study, the height of the free surface rise in a cup has been predicted. Generally the maximum rise of the free surface is dependent on the Reynolds number and Froude number strongly, but on the aspect ratio weakly. But the influence of the aspect ratio on the maximum rise of the free surface in not negligible in the range 10 < Re < 100.

  • PDF