• Title/Summary/Keyword: Inertia Phase

Search Result 110, Processing Time 0.025 seconds

Phase Portrait Analysis-Based Safety Control for Excavator Using Adaptive Sliding Mode Control Algorithm (적응형 슬라이딩 모드 제어를 이용한 위상 궤적 해석 기반 굴삭기의 안전제어 알고리즘 개발)

  • Oh, Kwang Seok;Seo, Ja Ho;Lee, Geun Ho
    • Journal of Drive and Control
    • /
    • v.15 no.3
    • /
    • pp.8-13
    • /
    • 2018
  • This paper presents a phase portrait analysis-based safety control algorithm for excavators, using adaptive sliding mode control. Since working postures and material types cause the excavator's rotational inertia to vary, the rotational inertia was estimated, and this estimation was used to design an adaptive sliding mode controller for collision avoidance of the excavator. In order to estimate the rotational inertia, the recursive least-squares estimation with multiple forgetting was applied with the information of the swing velocity of the excavator. For realistic evaluation, an actual working scenario-based performance evaluation was conducted. Based on the estimated rotational inertia and an analysis of estimation errors, sliding mode control inputs were computed. The actual working scenario-based performance evaluation of the designed safety algorithm was conducted, and the results showed that the developed safety control algorithm can efficiently avoid a collision with an object in consideration of rotational inertia variations.

A Study on the Robust Speed Control Characteristics of Induction Motor Using State Observer (상태 관측기를 이용한 유도전동기의 강인한 속도 제어특성에 관한 연구)

  • 이성근;노창주;김윤식;오진석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.503-511
    • /
    • 1997
  • In 3 phase induction motor control system, the speed control using the load torque observer becomes robust against disturbances by means of a feed-forward control of the estimated load torque component. In case of variation of inertia moment, the estimated load torque has error because the observer uses the nominal inertia to estimate the load torque. And so, it is difficult to obtain good speed control characteristics. This paper has two study target strategy. First, we executes feed-forward control with the load torque observer when motor inertia has nominal value and compare it with conventional PI con¬trol. The second strategy estimates inertia moment error using the load torque observer when inertia moment change. The proposed two strategy is confirmed through the computer simulations and the experimental implementations by TMS320C31 microprocessor.

  • PDF

Analysis on Phase Relation between Inertia Force and Dynamic Earth Pressure of Caisson by Numerical Analysis (수치해석을 이용한 우물통 기초의 관성력과 동적토압의 위상관계 분석)

  • Kim, Sung-Ryul;Jang, Hak-Sung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.23-31
    • /
    • 2008
  • Dynamic earth pressure acting on geotechnical structures can be driving force or resisting force for the displacement of the structure according to the phase relation between the dynamic earth pressure and inertia force of structures. In this research, the evaluation procedure of the phase relation between the dynamic earth pressure and the inertia force was proposed. According to the procedure, numerical analyses on caisson foundation of bridges were performed and the phase relation was analyzed. The analysis results showed that the dynamic earth pressure becomes the driving force, which increases the displacement of the structure, if the displacement amplitude of ground is larger than that of structure due to the low stiffness of the ground, and the dynamic earth pressure becomes the resisting force against the displacement of the structure if the displacement amplitude of ground is smaller than that of structure due to the high stiffness of the ground.

Analysis of influence factors on the seismic earth pressure acting on gravity walls (중력식 옹벽에 작용하는 배면 동적 토력의 영향 인자 분석)

  • 윤석재;김성렬;김명모
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.75-82
    • /
    • 2002
  • The Mononobe-Okabe method is generally used to evaluate the dynamic earth force for the seismic design of retaining walls. However, the Mononobe-Okabe method does not consider the effects of the dynamic interactions between the backfill soil and the wall. In fact, a phase difference exists between the inertia force and the seismic earth pressure. In this study, shaking table tests were peformed on gravity walls retaining dry backfill sand to analyze the influence of several parameters (the unit weight of the wall, the input acceleration and base friction) on the development of the seismic earth pressure. The experiments revealed that the magnitude of the inertia force mobilized during seismic loading affected the seismic earth pressure. The difference in the phase angles between the inertia force and the seismic earth pressure was retained at 180 degrees before the wall failed but its magnitude changed significantly as the wall began to fail.

  • PDF

Grid-friendly Characteristics Analysis and Implementation of a Single-phase Voltage-controlled Inverter

  • Zhang, Shuaitao;Zhao, Jinbin;Chen, Yang;He, Chaojie
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1278-1287
    • /
    • 2017
  • Inverters are widely used in distributed power generation and other applications. However, their lack of inertia and variable impedance may cause system instability and power transfer inaccuracy. This paper proposes a control scheme for a single phase voltage-controlled inverter with some grid-friendly characteristics. The proposed control algorithm enables the inverter to function as a voltage source with an inner output impedance in both the islanded and grid-connected modes. Virtual inertia and rotor equations are embedded in the PLL part. Thus, the frequency stability can remain. The inner output impedance can be adjusted freely, which helps to accurately decouple and transmit the output active and reactive power. The proposed inverter operates like a traditional synchronous generator. Simulations and experiments are designed and carried out to verify the proposed control strategy.

Unsteady Vaporization of Burning Droplet at High Pressure Environments With Linear Acoustic Mode (강한 음향장에 구속된 고압 액적의 연소)

  • Kim, Sung-Yup;Shin, Hyun-Ho;Yoon, Woong-Sup
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1122-1127
    • /
    • 2004
  • an isolated droplet combustion exposed to pressure perturbations in stagnant gaseous environment is numerically conducted. Governing equations are solved for flow parameters at gas and liquid phases separately and thermodynamic parameters at the interfacial boundary are matched for problem closure. For high-pressure effects, vapor-liquid interfacial thermodynamics is rigorously treated. A series of parametric calculations in terms of mean pressure level and wave frequencies are carried out employing a n-pentane droplet in stagnant gaseous air. Results show that the operating pressure and driving frequency have an important role in determining the amplitude and phase lag of a combustion response. Mass evaporation rate responding to pressure waves is amplified with increase in pressure due to substantial reduction in latent heat of vaporization. Phase difference between pressure and evaporation rate decreases due to the reduced thermal inertia at high pressure. In addition to this, augmentation of perturbation frequency also enhances amplification of vaporization rate because the time period for the pressure oscillation is much smaller than the liquid thermal inertia time. The phase of evaporation rate shifts backward due to the elevated thermal inertia at high acoustic frequency.

  • PDF

Prediction of Vehicle Fuel Consumption on a Component Basis (가솔린 차량의 각 요소별 연료소모량 예측)

  • 송해박;유정철;이종화;박경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.203-210
    • /
    • 2003
  • A simulation study was carried to analyze the vehicle fuel consumption on component basis. Experiments was also carried out to identify the simulation results, under FTP-75 Hot Phase driving conditions. and arbitrary driving conditions. A good quantitative agreement was obtained. Based on the simulation, fuel energy was used in pumping loss(3.7%), electric power generation(0.7%), engine friction(12.7%), engine inertia(0.7%), torque converter loss(4.6%), drivetrain friction(0.6%), road-load(9.2%), and vehicle inertia(13.4%) under FTP-75 Hot Phase driving conditions. Using simulation program, the effects of capacity factor and idle speed on fuel consumption were estimated. A increment of capacity factor of torque converter resulted in fuel consumption improvement under FTP-75 Hot Phase driving conditions. Effect of a decrement of idle speed on fuel consumption was negligible under the identical driving conditions.

Variation of Dynamic Earth Pressure Due to Sliding of Retaining Walls (옹벽의 활동에 따른 배면 동적토압의 변화)

  • Yoon Suk-Jae;Kim Sung-Ryul;Hwang Jae-Ik;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.55-61
    • /
    • 2005
  • Mononobe-Okabe method is generally used to evaluate dynamic earth pressure for the seismic design of retaining walls. However, Mononobe-Okabe method does not consider the effects of dynamic interactions between backfill soil and walls. In this research, shaking table tests on retaining walls were performed to analyze the phase and magnitude of dynamic earth pressure. The unit weight of walls, the amplitude of input acceleration and the base friction coefficient of walls were varied to analyze the influence of these factors on the dynamic earth pressure. Test results showed that the dynamic earth pressure was 180 degrees out of phase with the wall inertia force for the low sliding velocity of the wall, whereas small peaks of the dynamic earth pressure, which are in phase with the wall inertia force, were developed for the high sliding velocity of the wall. The amplitude of dynamic earth pressure was proportional to that of wall acceleration and the unit weight of the wall. In addition, the dynamic earth forces calculated by the Mononobe-Okabe method were the upper limit of the dynamic earth pressures.

A Study on the Phase Bandwidth Frequency of a Directional Control Valve Based on the Hydraulic Line Pressure (배관 압력을 이용한 방향제어밸브 위상각 대역폭 주파수 측정에 관한 연구)

  • Kim, Sungdong;Lee, Jung-eun;Shin, Daeyoung
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.1-10
    • /
    • 2018
  • Spool displacement of a direction control valve is the standard signal to measure the bandwidth frequency of the direction control valve. When the spool displacement signal is not available, it is suggested in this study to use the metering hydraulic line as an alternative way to measure - 90 degree phase bandwidth frequency of the hydraulic direction control valve. Dynamics of the hydraulic line is composed of inertia, capacitance, and friction effects. The effect of oil inertia is dominant in common hydraulic line dynamics and the line dynamics is close to a derivative action in a range of high frequency; such as a range of bandwidth frequency of common directional control valves. Phase difference between spool displacement and line load pressure is nearly constant as a valve close to 90 degree. If phase difference is compensated from the phase between valve input and pressure, compensated phase may be almost same as the phase of spool displacement that is a standard signal to measure phase bandwidth frequency of the directional control valve. A series of experiments were conducted to examine the possibility of using line pressure in to measure phase bandwidth frequency of a directional control valve. Phase bandwidth frequency could be measured with relatively high precision based on metering hydraulic line technique and it reveals consistent results even when valve input, oil temperature, and supply pressure change.

A Study on the Parameters and Characteristics of Induction Motor Driven by Inverter (인버터로 구동되는 유도전동기의 정수 및 특성에 관한 연구)

  • 전내석;김종윤;오진석;김윤식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.34-42
    • /
    • 2000
  • In this paper conventional technique will be described, which can be used for the measuring various parameters of induction motor. This is followed by presenting some other, alternative, techniques. The two tests are described which are suitable to obtain the electrical parameters of symmetrical 1hp three-phase squirrel-cage induction motor. These are the blocked rotor test and no load test. By the application of these, it is possible to determine the parameters which are presented in the steady-state equivalent-circuit of determining an induction motor. One conventional method of determining the inertia of an induction motors is obtained by performing retardation tests. The angular rotor speed of the motor is monitored, following its disconnection from the stator supply. Since the inertia torque J dw/dt contains the inertia coefficient J and the friction and windage torque Bw contains the coefficient B, then J and B can be determined by performing retardation tests.

  • PDF