• Title/Summary/Keyword: Inert gas

Search Result 384, Processing Time 0.023 seconds

Performance Analysis of a Cold Inert Gas Generator (비황성가스제너레이터 성능분석)

  • 김수용
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.2
    • /
    • pp.75-81
    • /
    • 1999
  • Present study deals with performance analysis of a cold inert gas generator which is to be used as an effective and prompt mean to suppress the fire. Every year, squandering of numerous People and assets by fire have been noticed around us. However, there seemed not enough progresses made to suppress the fire effectively for the past few centuries. Present study introduces CIGG(Cold Inert Gas Generator), basically a new conceptual approach to suppress the fire, through performance analysis of the machine and tried to suggest basic specifications of the heat exchanger which is a vital part of the machine, while at the same time, revealing the basic performance of the CIGG in the form of a design point.

  • PDF

Uncertainty evaluation in electrochemical noise resistance measurement (전기화학적 노이즈 저항 측정에서의 불확도 평가)

  • Kim, Jong Jip;Kang, Su Yeon
    • Corrosion Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.220-226
    • /
    • 2013
  • The uncertainty in statistical noise resistance measurement was evaluated for a type 316 stainless steel in NaCl solutions at room temperature. Sensitivity coefficients were determined for measurands or variables such as NaCl concentration, pH, solution temperature, surface roughness, inert gas flow rate and bias potential amplitude. The coefficients were larger for the variables such as NaCl concentration, pH, inert gas flow rate and solution temperature, and they were the major factors increasing the combined standard uncertainty of noise resistance. However, the contribution to the uncertainty in noise resistance measurement from the above variables was remarkably low compared to that from repeated measurements of noise resistance, and thus, it is difficult to lower the uncertainty in noise resistance measurement significantly by lowering the uncertainties related with NaCl concentration, pH, inert gas flow rate and solution temperature. In addition, the uncertainty in noise resistance measurement was high amounting to 17.3 % of the mean, indicating that the reliability in measurement of noise resistance is low.

The Investigation of Reaction Parameters on the Reactivity in the Preparation of SiC by SHS (자전연소합성법에 의한 SiC 분말 제조시 반응변수의 영향)

  • Shin, Chang-Yun;Won, Hyung-Il;Nersisyan, Hayk;Won, Chang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.7 s.290
    • /
    • pp.427-432
    • /
    • 2006
  • The preparation of SiC powder by SHS in the system of $SiO_2-Mg-C$ was investigated in this study. The effects of various processing parameters such as the initial pressure of inert gas in reactor, the content of Mg and C in mixture and the size of $SiO_2$ particles on the synthesis of SiC by SHS methode were investigated. The minimum initial pressure of inert gas in reactor for SHS reaction in this system was 5 atm, and as the pressure increased, and the concentration of unreacted Mg decreased. At 50 atm of the initial inert gas pressure in reactor, the optimum composition for the preparation of pure SiC was $SiO_2+2.5Mg+1.2C$. SiC powder synthesized in this condition had a mixture of ${\alpha}-SiC\;and\;{\beta}-SiC$ with an irregular shape and the particle size of $0.5{\sim}0.8{\mu}m$.

Thermodynamic Empirical Equations for Physical Properties of Inert Gas Mixtures (불활성 기체 혼합물의 물성에 관한 열역학적 실험식)

  • 김재덕;여미순;이윤우;노경호
    • Fire Science and Engineering
    • /
    • v.17 no.2
    • /
    • pp.43-49
    • /
    • 2003
  • For the inert gases of Ar, $N_2$and $CO_2$, the empirical equations of the gas mixture were correlated in terms of saturated pressure, density and viscosity. They were obtained by regression analysis based on the mixing rule. The empirical equation of saturated pressure was assumed as the first order function of temperature. The empirical form of density was expressed as compressibility factor and saturated pressure while the empirical equation of viscosity was formulated as a power function of temperature. This empirical equations of the physical properties were obtained in the composition of Ar, $N_2$and $CO_2$, 40/50/10(mol. %).

Discharge and Fire Extinguishing Test of Inert Gas Clean Agent (불활성 가스계 청정 소화약제의 방출 및 소화)

  • Song Eun-Seok;Kim Jae-Duck;Park Yang-Won
    • Fire Science and Engineering
    • /
    • v.19 no.2 s.58
    • /
    • pp.29-36
    • /
    • 2005
  • We carried out discharge and fire extinguishing tests of new inert gas clean agent, which consists of $92\%$ nitrogen and $8\%$ carbon dioxide, as an alternative of Halon that is banned by Montreal Protocol to protect the ozone layer of the earth. Discharge and fire extinguishing tests were performed in $27m^3$ and $190m^3$ rooms with piping which allows gaseous agent to transport from storage to test rooms. We confirmed that it took less than regulation time, 60 seconds for the discharge of over $95\%$ initial charged amounts. Discharge test variables were piping length and orifice size. Fire extinguishing tests verified that this new inert gas clean agent is suitable for both n-Heptane fire and deep seated fire of wood crib.

The Investigation of Reaction Parameters on the Reactivity in the Preparation of TiB2 by SHS (자전연소합성법에 의한 TiB2 분말의 제조에 있어 반응성에 대한 반응변수의 고찰)

  • Shin, Chang-Yun;Park, Young-Chul;Lee, Huk-Hee;Nersisyan, Hayk;Won, Chang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.1 s.284
    • /
    • pp.16-21
    • /
    • 2006
  • The preparation of $TiB_2$ by SHS in $B_2O_3-Mg-TiO_2$ system was investigated in this study. In the preparation of $TiB_2$, the effect on reactivity and reaction products of the initial pressure of inert gas in reactor, the content of Mg and $TiO_2$ in mixture was investigated. The minimum initial pressure of inert gas in reactor for SHS reaction in this system was 5atm, and as the pressure increased, the concentration of unreacted Mg decreased and combustion temperature increased. At the initial inert gas pressure in reactor of 50atm, the optimum composition for the preparation of pure $TiB_2$ was $B_2O_3+5Mg+TiO_2$. The $TiB_2$ synthesized in this condition had an irregular shape and the particle size of $1\~3{\mu}m$.

Preparation of FeB by SHS (Self Propagating High Temperature Synthesis) (자전연소합성법에 의한 FeB 분말의 제조)

  • Shin, Chang-Yun;Won, Chang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.7
    • /
    • pp.418-422
    • /
    • 2008
  • The preparation of FeB by SHS in $B_2O_3-Mg-Fe-Fe_3O_4$ system was investigated in this study. In the preparation of FeB, the effects of the initial pressure of inert gas in reactor, the content of Mg and $Fe_3O_4$ in mixture on the reactivity and reaction products was investigated. The minimum initial pressure of inert gas in reactor for SHS reaction in this system was 25 atm, and as the pressure increased, the concentration of unreacted Mg decreased and combustion temperature increased. At the initial inert gas pressure in reactor of 25 atm, the optimum composition for the preparation of pure FeB was $1.5B_2O_3$+3.43Mg+ 1.7Fe+$0.1Fe_3O_4$. The FeB synthesized in this condition had an irregular shape and the particle size of $5\;{\mu}m$.

Stabilization of Inert-Gas-Diluted Co-Flow Diffusion Flame by a Pilot Flame (불활성기체로 희석된 동축류 확산화염의 파일럿화염에 의한 안정화)

  • Ahn, Taekook;Lee, Wonnam;Park, Sunho
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.4
    • /
    • pp.19-25
    • /
    • 2015
  • An experimental study was conducted to find the effect of a pilot flame on the flammability of inert-gas-diluted methane and propane. The diffusion pilot flame was formed with propane at the innermost nozzle of a concentric triple co-flow burner. The main diffusion flame was formed with nitrogen-diluted methane or propane at the outermost nozzle of the burner. An air flow was located in-between. The results showed that the existence of the pilot flame helped stabilizing the main flame even at the flammability limit concentration of nitrogen-diluted fuel. The co-flow burner generated re-circulation zones and local variation of equivalence ratio depending on the flow rates of the reactants, which are known to help flame stabilization. Hot-wire experiments confirmed that both heating of the reactants and supplying of active chemical species by the pilot flame contributed to stabilization of the main flame. The results of this study would suggest a design concept for an efficient SVRU system that minimizes the emission of unburned hydrocarbon fuel from ship fuel tanks.

Role of A-TIG process in joining of martensitic and austenitic steels for ultra-supercritical power plants -a state of the art review

  • Bhanu, Vishwa;Gupta, Ankur;Pandey, Chandan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2755-2770
    • /
    • 2022
  • The need for Dissimilar Welded Joint (DWJ) in the power plant components arises in order to increase the overall efficiency of the plant and to avoid premature failure in the component welds. The Activated-Tungsten Inert Gas (A-TIG) welding process, which is a variant of Tungsten Inert Gas (TIG) welding, is focus of this review work concerning the DWJ of nuclear grade creep-strength enhanced ferritic/martensitic (CSEF/M) steels and austenitic steels. A-TIG DWJs are compared with Multipass-Tungsten Inert Gas (M-TIG) DWJ based on their mechanical and microstructural properties. The limitations of multipass welding have put A-TIG welding in focus as A-TIG provides a weld with increased depth of penetration (DOP) and enhanced mechanical properties. Hence, this review article covers the A-TIG welding principle and working parameters along with detailed analysis of role played by the flux in welding procedure. Further, weld characteristics of martensitic and austenitic steel DWJ developed with the A-TIG welding process and the M-TIG welding process are compared in this study as there are differences in mechanical, microstructural, creep-related, and residual stress obtained in both TIG variants. The mechanics involved in the welding process is deliberated which is revealed by microstructural changes and behavior of base metals and WFZ.