• Title/Summary/Keyword: Inert gas

Search Result 384, Processing Time 0.026 seconds

Optimal Aluminizing Coating on Incoloy 909 (Incoloy 909 합금의 최적 알루미나이징 확산 코팅)

  • Kwon, S.W.;Yoon, J.H.;Joo, Y.K.;Cho, T.Y.;Ahn, J.S.;Park, B.K.
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.4
    • /
    • pp.175-179
    • /
    • 2007
  • An Fe-Ni-Co based superalloy Incoloy 909 (Incoloy 909) has been used for gas turbine engine component material. This alloy is susceptible to high temperature oxidation and corrosion because of the absence of corrosion resistant Cr. For the improvement of durability of the component of Incoloy 909 aluminizing-chromate coating by pack cementation process has been investigated at relatively low temperature of about $550^{\circ}C$ to protect the surface microstructure and properties of Incoloy 909 substrate. As a previous study to aluminizing-chromate coating by pack cementation of Incoloy 909, the optimal aluminizing process has been investigated. The size effects of source Al powder and inert filler $Al_O_3$ powder and activator selection have been studied. And the dependence of coating growth rate on aluminizing temperature and time has also been studied. The optimal aluminizing process for the coating growth rate is that the mixing ratio of source Al powder, activator $NH_4Cl$ and filler $Al_O_3$ are 80%, 1% and 19% respectively at aluminizing temperature $552^{\circ}C$ and time 20 hours.

Effects of Porosity on Durability in a Porous Nozzle for Continuous Casting (연속주조용 Porous Nozzle의 기공율이 내구성에 미치는 영향)

  • Yoon, Sanghyeon;Cho, Mun-Kyu;Jeong, Doo Hoa;Lee, Heesoo
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.625-629
    • /
    • 2010
  • This study investigates the effects of porosity on the thermal stability and the thermal shock resistance of a porous nozzle used for blowing an inert gas. The samples of $Al_2O_3-SiO_2-ZrO_2$ system, which had the apparent porosity of 16~30% and bulk density of $2.6{\sim}3.2g/cm^3$, were prepared by adding different graphite contents (5, 10, 20 wt%) as a pore-forming agent. The thermal shock test was conducted at ${\Delta}T=500$, 1000, and $1400^{\circ}C$ also and the thermal stability was also carried out at 1550, 1600, and $1650^{\circ}C$ for 5 hrs. The specimen contained 10 wt% graphite had uniform pore size distribution, whereas the specimen with 20 wt% graphite showed non-uniform pore size distribution. As a result of thermal shock test, the specimen containing 10 wt% graphite appears to have higher mechanical strength than the other specimens (5, 20 wt% graphite). Both the 5 wt% and 20 wt% graphite specimens developed a non-uniform pore size distribution and cracks that were generated by intensive thermal stress.

Qualitative Hazard Analysis for a Batch Radical Reaction Process using HAZOP Method (HAZOP 기법을 이용한 회분식 라디칼 반응 공정에 대한 정성적 위험성 평가 방법 연구)

  • Park, KyungMin;Lee, DongKyu;Lee, JoonMan;Ahn, WonSool
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.385-393
    • /
    • 2019
  • Potential fire, explosion and safety hazards exist in medium- or small-scale chemical plants using radical batch reaction processes due to the various conditions of materials, works or products. To minimize the potential damage, a study was conducted on qualitative hazard analysis using the HAZOP technique, which is a typical method for a qualitative risk assessment and analysis of the potential risks encountered in these chemical plants. For this purpose, a domestic chemical plant, which produces the acrylic resin by a radical batch reaction process, was selected and a risk assessment and analysis according to the procedure of HAZOP method was performed for the process. As the result of the study, to prevent the hazard, the input of inert gas and the installation of a pressure gauge were indispensable. In addition, the initiator and monomer should also be separated, and inhibiting substances and equipment are also necessary to prevent a runaway reaction.

A Brief Investigation on the Performance Variation and Shelf Lifetime in Polymer:Nonfullerene Solar Cells

  • Lee, Sooyong;Kim, Hwajeong;Lee, Chulyeon;Kim, Youngkyoo
    • Current Photovoltaic Research
    • /
    • v.7 no.3
    • /
    • pp.55-60
    • /
    • 2019
  • Polymer:nonfullerene solar cells with an inverted-type device structure were fabricated by employing the bulk heterojunction (BHJ) active layers, which are composed of poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophene-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))] (PBDB-T) and 3,9-bis(6-methyl-2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3-d']-s-indaceno[1,2-b:5,6-b']dithiophene (IT-M). The BHJ layers were formed on a pre-patterned indium-tin oxide (ITO)-coated glass substrate by spin-coating using the blend solutions of PBDB-T and IT-M. The solar cell performances were investigated with respect to the cell position on the ITO-glass substrates. In addition, the short-term shelf lifetime of solar cells was tested by storing the PBDB-T:IT-M solar cells in a glovebox filled with inert gas. The results showed that the performance of solar cells was relatively higher for the cells close to the center of substrates, which was maintained even after storage for 24 h. In particular, the PCE of PBDB-T:IT-M solar cells was marginally decreased after storage for 24 h owing to the slightly reduced fill factor, even though the open circuit voltage was unchanged after 24 h.

Effect of Cl2 on Electrodeposition Behavior in Electrowinning Process

  • Kim, Si Hyung;Kim, Taek-Jin;Kim, Gha-Young;Shim, Jun-Bo;Paek, Seungwoo;Lee, Sung-Jai
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2017.10a
    • /
    • pp.73-73
    • /
    • 2017
  • Pyroprocessing at KAERI (Korea Atomic Energy Research Institute) consists of pretreatment, electroreduction, electrorefining and electrowinning. SFR (Sodium Fast Reactor) fuel is prepared from the electrowinning process which is composed of LCC (Liquid Cadmium Process) and Cd distillation et al. LCC is an electrochemical process to obtain actinides from spent fuel. In order to recover actinides inert anodes such as carbon material are used, where chlorine gas ($Cl_2$) evolves on the surface of the carbon material. And, stainless steel (SUS) crucible should be installed in large-scale electrowinning system. Therefore, the effect of chlorine on the SUS material needs to be studied. LiCl-KCl-$UCl_3$-$NdCl_3$-$CeCl_3$-$LaCl_3$-$YCl_3$ salt was contained in 2 kinds of electrolytic crucible having an inner diameter of 5cm, made of an insulated alumina and an SUS, respectively. And, three kinds of electrodes such as cathode, anode, reference were used for the electrochemical experiments. Both solid tungsten (W) and LCC were used as cathodes. Cd of 45 g as the cathode material was contained in alumina crucibles for the deposition experiments, where the crucible has an inner diameter of 3 cm. Glassy carbon rod with the diameter of 0.3 cm was employed as an anode, where shroud was not used for the anode. A pyrex tube containing LiCl-KCl-1mol% AgCl and silver (Ag) wire having a diameter of 0.1cm was used as a reference electrode. Electrodeposition experiments were conducted at $500^{\circ}C$ at the current densities of $50{\sim}100mA/cm^2$. In conclusion, Fe ions were produced in the salt during the electrodeposition by the reaction of chlorine evolved from the anode and Fe of the SUS crucible and thereby LCC system using SUS crucible showed very low current efficiencies compared with the system using the insulated alumina crucible. Anode shroud needs to be installed around the glassy carbon not to influence surrounding SUS material.

  • PDF

Study of Stabilization Process of PAN Precursor and its Characteristics Change by Plasma Treatment (플라즈마 처리 방법을 이용한 PAN 전구체 특성 변화 연구)

  • Kang, Hyo-Kyoung;Kim, Jung-Yeon;Kim, Hak-Yong;Choi, Yeong-Og
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.23-29
    • /
    • 2021
  • Commercialized carbon fiber obtained from polyacrylonitrile(PAN) precursor is subjected to oxidation stabilization at 180 to 300℃ in air atmosphere and carbonization process at 1600℃ or lower in inert gas atmosphere. Both of these processes use a lot of time and high energy, but are essential and important for producing high-performance carbon fibers. Therefore, in recent years, an alternative stabilization technology by being assisted with various other energy sources such as plasma, electron beam and microwave which can shorten the process time and lower energy consumption has been studied. In this study, the PAN precursor was stabilized by using plasma treatment and heat treatment continuously. The morphology, structural changes, thermal and physical properties were analyzed using Field emission scanning electron microscopy(FE-SEM), X-ray diffraction(XRD), Fourier transform infrared(FT-IR), Thermogravimetric analysis(TGA) and Favimat.

Airborne Concentrations of Welding Fume and Metals of Workers Exposed to Welding Fume (용접사업장 근로자의 흄 및 금속 노출농도에 대한 평가와 혈중 금속 농도)

  • Choi, Ho-Chun;Kim, Kangyoon;An, Sun-Hee;Park, Wha-Me;Kim, So-Jin;Lee, Young-Ja;Chang, Kyou-Chull
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.1
    • /
    • pp.56-72
    • /
    • 1999
  • Airborne concentrations of welding fumes in which 13 different metals such as Al, Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Si, Sn, Ti, and Zn were analyzed were measured at 18 factories including automobile assembly and manufactures, steel heavy industries and shipyards. Air samples were collected by personal sampler at each worker's worksite(n=339). Blood levels of Cd, Cu, Fe, Mn, Pb and Zn were also measured from samples taken from 447 welders by atomic absorption spectrometry and compared with control values obtained from 127 non-exposed workers. The results were as follows ; 1. Among various welding types, $CO_2$ welding 70.2 % were widely used, shielded metal arc welding(SMAW) 22.1 % came next, and rest of them were metal inert gas(MIG) welding, submerged arc welding(SAW), spot welding(SPOT) and tungsten inert gas(TIG) welding. 2. Welding fume concentration was $0.92mg/m^3$($0.02{\sim}15.33mg/m^3$) at automobile assembly and manufactures, $4.10mg/m^3$($0.02{\sim}70.75mg/m^3$) at steel heavy industries and $5.59mg/m^3$($0.30{\sim}91.16mg/m^3$) at shipyards, respectively, showing significant difference among industry types. Workers exposed to high concentration of welding fumes above Korean Permissible Exposure Limit(KPEL) amounted to 7.9 % and 12.5 %, in $CO_2$ welding and in SMAW at automobile assembly and manufactures and 62.7 % in $CO_2$ welding, and 12.5 % in SMAW at shipyards, and 66.2 % in $CO_2$ welding and 70.6 % in SMAW at steel heavy industries. 3. Geometric mean of airborne concentration of each metal released from welding fumes was below one 10th of KPEL in all welding types. Percentage of workers, however, exposed to airborne concentration of metals above KPEL amounted to 16.8 % in Mn and 7.6 % in Fe in $CO_2$ welding; 37.5 % in Cu in SAW, 30 % in Cu in TIG; and 25 % in Pb in SPOT welding. As a whole, 76 Workers(22.4%) were exposed to high concentration of any of the metals above KPEL. 4. There were differences in airborne concentration of metals such as Al, Cd, Cr, Cu. Fe. Mn, Mo, Ni, Pb, Si, Sn, Ti and Zn by industry types. These concentrations were higher in shipyards and steel heavy industries than in automobile assembly and manufactures. Workers exposed to higher concentration of Pb above KPEI amounted to 7.4 % of workers(7/94) in automobile assembly and manufactures. In shipyards, 19.2 % of workers(19/99) were over-exposed to Mn and 7.1 % (7/99) to Fe above KPEL. In steel heavy industries, 14.4 %(21/146), 7.5 %(11/146) and 13 %(19/146) were over-exposed to Mn, Fe and Cu, respectively. As a whole, 76 out of 339 workers(22.4%) were exposed to any of the metals above KPEL. 5. Blood levels of Cd, Cu, Fe, Mn, Pb, and Zn in welders were $0.11{\mu}g/100m{\ell}$, $0.84{\mu}g/m{\ell}$, $424.4{\mu}g/m{\ell}$, $1.26{\mu}g/100m{\ell}$, $5.01{\mu}g/100m{\ell}$ and $5.68{\mu}g/m{\ell}$, respectively, in contrast to $0.09{\mu}g/100m{\ell}$, $0.70{\mu}g/m{\ell}$, $477.2{\mu}g/m{\ell}$, $0.73{\mu}g/100m{\ell}$, $3.14{\mu}g/100m{\ell}$ and $6.15{\mu}g/m{\ell}$ in non-exposed control groups, showing significantly higher values in welders but Fe and Zn.

  • PDF

Identifuication of College Student's And Teacher's Conceptions for Chemical Equilibrium and Equilibrium Shift (화학평형과 평형이동에 대한 대학생과 교사들의 개념조사)

  • Park, Jong Yun;Park, Hyeon Ju
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.3
    • /
    • pp.265-278
    • /
    • 2002
  • A concept test was administered to college students and teachers to identify their understanding of chemical equilibrium and equilibrium shift. The subjects were 53 freshmen in the General Chemistry class, 28 juniors in the Physical Chemistry class and 26 seniors from a university and 10 high school teachers in Seoul. Test items include the calculations of partial pressure and concentration of the gas in the mixture, the equilibrium constant cal-culation and the prediction of equilibrium shift when an inert gas is added to the gaseous reaction system, and the equilibrium concentration calculation and the prediction of equilibrium shift when water or common ion is added to the weak acid solution. The test was focused to identify whether the subjects can predict equilibrium shift using the reaction quotient change for the situations in which Le Chatelier principle is difficult to apply. The results showed that the achievements of teachers and juniors were significantly higher than those of freshmen and seniors. Many stu-dents had difficulties in predicting equilibrium shift using the reaction quotient while they could calculate partial pres-sure and concentration for the same situation. It means they are lack of conceptual understanding of chemical equilibrium shift.

Study on Torrefaction Characteristics of Solid Biomass Fuel and Its Combustion Behavior (바이오매스 고형연료의 반탄화 특성 및 반탄화물의 연소특성에 관한 연구)

  • Lee, Weon Joon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.4
    • /
    • pp.86-94
    • /
    • 2015
  • Torrefaction is a thermochemical process proceeded at the temperature around $250^{\circ}C$ in an inert gas condition. By torrefaction, the hemicellulose portions contained in biomass are broken down to change into the volatile gas which is removed from biomass eventually. The main purpose of biomass torrefaction is to improve the energy density of the biomass to minimize the transport energy consumption, though the flammability can be elevated for transportation. In this study two types of solid biomass fuel, waste wood and rice straw, were torrefied at various temperature range from $200^{\circ}C$ to $300^{\circ}C$ to evaluate the torrefied biomass characteristics. In addition torrefied biomass were tested to evaluate the combustion characteristics using TGA (Thermogravimetric Analysis). After the torrefaction of biomass, the C/H (carbon to hydrogen ratio) and C/O (carbon to oxygen ratio) were measured for aquisition of bio-stability as well as combustion pattern. Generally C/H ratio implies the soot formation during combustion, and the C/O ratio for bio-stability. By torrefaction temperature at $300^{\circ}C$, C/H ratio and C/O ratio were increased by two times for C/H and three times for C/O. The torrefied biomass showed similar TGA pattern to coal compared to pure biomass; that is, less mass decrease at lower temperature range for torrefied biomass than the pure biomass.

The Effect of Solubilization Pretreatment Process on Anaerobic Digestion of Waste Activated Sludge (전처리 가용화 공정이 잉여슬러지 혐기성 소화효율에 미치는 영향)

  • Yoo, Ho-Sik;Ahn, Seyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.3
    • /
    • pp.35-43
    • /
    • 2016
  • COD properties of waste activated sludge (WAS) were investigated for various solubilization rate of mechanical pretreatment method in anaerobic digestion process. Inert COD was 37.0% of total COD in untreated WAS. Particulate biodegradable COD was converted to soluble biodegradables and particulate unbiodegradables as solubilization was processed. Particulate unbiodegradable portion of COD in WAS can be increased as particulate biodegradable portion is decreased in case of relatively long SRT of biological treatment. Thus, COD properties of WAS should be investigated in case of relatively low particulate biodegradable COD, because of possible low effect of solubilization. COD removal rate in anaerobic digester was enhanced as much as 2.1% and 15.1% for solubilization rate 5% and 35% due to pretreatment, respectively. COD removal rate was increased from 25% to 40%, and methane gas generation was increased from $607m^3/d$ to $907m^3/d$ as particulate COD of WAS was solubilized to 35% in pretreatment facilities.