• 제목/요약/키워드: Inelastic Strain

검색결과 156건 처리시간 0.03초

Failure simulation of nuclear pressure vessel under LBLOCA scenarios

  • Eui-Kyun Park;Jun-Won Park;Yun-Jae Kim;Kukhee Lim;Eung-Soo Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권7호
    • /
    • pp.2859-2874
    • /
    • 2024
  • This paper presents the finite element deformation and failure simulation of a typical Korean high-power reactor vessel under a severe accident characterized by large break loss of coolant (LBLOCA) with in-vessel retention of molten corium through external reactor vessel cooling (IVR-ERVC) conditions. Temperature distributions calculated using Modular Accident Analysis Program Version 5 (MAAP5) as thermal boundary conditions were used, and ABAQUS thermal and structural analyses were performed. After full ablation, the temperature of the inner surface in the thinnest section remained high (920 ℃), but the stress remained relatively low (less than 6 MPa). At the outer surface, the stress was as high as 250 MPa; however, the resulting plastic strain was small owing to the low temperature of 200 ℃. Variations in stress, inelastic strain, and temperature with time in the thinnest section suggest that the plastic and creep strains are saturated owing to stress relaxation, resulting in low cumulative damage. Thus, the lower head of the vessel can maintain its structural integrity under LBLOCA with IVR-ERVC conditions. The sensitivity analysis of internal pressure indicates the occurrence of failure in the thinnest section at an internal pressure >9.6 MPa via local necking followed by failure due to high stresses.

안티푸라민-에스® 로션의 레올로지 특성 연구 (Rheological Properties of Antiphlamine-S® Lotion)

  • 국화윤;송기원
    • Journal of Pharmaceutical Investigation
    • /
    • 제39권3호
    • /
    • pp.185-199
    • /
    • 2009
  • Using a strain-controlled rheometer [Advanced Rheometric Expansion System (ARES)], the steady shear flow properties and the dynamic viscoelastic properties of $Antiphlamine-S^{(R)}$ lotion have been measured at $20^{\circ}C$ (storage temperature) and $37^{\circ}C$ (body temperature). In this article, the temperature dependence of the linear viscoelastic behavior was firstly reported from the experimental data obtained from a temperature-sweep test. The steady shear flow behavior was secondly reported and then the effect of shear rate on this behavior was discussed in detail. In addition, several inelastic-viscoplastic flow models including a yield stress parameter were employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models was examined by calculating the various material parameters. The angular frequency dependence of the linear viscoelastic behavior was nextly explained and quantitatively predicted using a fractional derivative model. Finally, the strain amplitude dependence of the dynamic viscoelastic behavior was discussed in full to elucidate a nonlinear rheological behavior in large amplitude oscillatory shear flow fields. Main findings obtained from this study can be summarized as follows : (1) The linear viscoelastic behavior is almostly independent of temperature over a temperature range of $15{\sim}40^{circ}C$. (2) The steady shear viscosity is sharply decreased as an increase in shear rate, demonstrating a pronounced Non-Newtonian shear-thinning flow behavior. (3) The shear stress tends to approach a limiting constant value as a decrease in shear rate, exhibiting an existence of a yield stress. (4) The Herschel-Bulkley, Mizrahi-Berk and Heinz-Casson models are all applicable and have an equivalent validity to quantitatively describe the steady shear flow behavior of $Antiphlamine-S^{(R)}$ lotion whereas both the Bingham and Casson models do not give a good applicability. (5) In small amplitude oscillatory shear flow fields, the storage modulus is always greater than the loss modulus over an entire range of angular frequencies tested and both moduli show a slight dependence on angular frequency. This means that the linear viscoelastic behavior of $Antiphlamine-S^{(R)}$ lotion is dominated by an elastic nature rather than a viscous feature and that a gel-like structure is present in this system. (6) In large amplitude oscillatory shear flow fields, the storage modulus shows a nonlinear strain-thinning behavior at strain amplitude range larger than 10 % while the loss modulus exhibits a weak strain-overshoot behavior up to a strain amplitude of 50 % beyond which followed by a decrease in loss modulus with an increase in strain amplitude. (7) At sufficiently large strain amplitude range (${\gamma}_0$>100 %), the loss modulus is found to be greater than the storage modulus, indicating that a viscous property becomes superior to an elastic character in large shear deformations.

비내진 상세를 가진 저층 R.C조의 외부접합부 거동 (Exterior Joint Behavior of Low-Rise Reinforced Concrete Frame with Non-Seismic Detail)

  • 김영문;기찬호;장준호;이세웅;김상대
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.481-486
    • /
    • 1998
  • In this paper, elastic and inelastic behavior of exterior joint of moment-resisting R.C frame with non-seismic detail subjected to reversed cyclic lateral load such as earthquake excitations was investigated. 1/2-scals subassemblage exterior beam-column joint including slab was manufactured based on similitude law. Then, pseudo static test under the displacement control was performed. The results of 1)crack pattern and failure mode, 2)degradation stiffness and strength, energy dissipation capacity from load-displacement hysteresis curve, 3)strain of steel were analysed.

  • PDF

마이크로 및 매크로 섬유를 사용한 하이브리드 HPFRCC의 역학적 특성에 관한 연구 (A Study on the Mechanical Properties of Hybrid HPFRCs Using Micro and Macro Fibers)

  • 김재환;이의배;김영선;김영덕;주지현;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.276-279
    • /
    • 2004
  • Concrete is one of the principal materials for the structure and it is widely used all over the world. but it shows extremely brittle failure under bending and tensile load. Recently to improve such a poor property. High Performance Fiber Reinforced Cementitious Composites (HPFRCC) have been developed. and it are defined by an ultimate strength higher than their first cracking strength and the formation of multiple cracking during the inelastic deformation process. This study is to develop the hybrid HPFRCC with high ductility and strain capacity in bending and tensile load. and the three-point bending test on hybrid HPRFCC reinforced with micro and macro fibers is carried out in this paper. As the results of the bending tests. hybrid HPFRCCs reinforced with PVA40+SF and PVA100+PVA660 showed the high ultimate bending stress, multiple cracks and displacement hardening under bending load.

  • PDF

황토와 고로슬래그를 첨가한 콘크리트의 건조수축 및 크리프 특성에 관한 연구 (A Study of Properties of Drying Shrinkage and Creep of Concrete Incorporating Hwangtoh and Blast Furnace Slag)

  • 강홍기;양근혁;이영호;황혜주;정헌수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.612-615
    • /
    • 2004
  • The objective of this experimental study was to understand inelastic strain of concrete incorporating hwangtoh or combination of hwangtoh and slag. Main variables were replacement level of admixtures, hwangtoh and slag. We studied the properties of concrete such as heat of hydration, drying shrinkage and creep according to the replacement level of hwangtoh and slag. Test results showed that the heat of hydration of concrete decrease with increasing hwangtoh and slag replacement. Also drying shrinkage and creep of concrete increase with increasing hwangtoh replacement.

  • PDF

열하중과 굽힘 하중 조건에서의 솔더조인트 피로 특성 비교연구 (A Comparative study on the solder joint fatigue under thermal and mechanical loading conditions)

  • 김일호;이순복
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제7권2호
    • /
    • pp.45-55
    • /
    • 2007
  • In this study, two types of fatigue tests were conducted. Firs, cyclic bending tests were performed using the micro-bending tester. Second, thermal fatigue tests were conducted using a pseudo power cycling machine which was newly developed for a realistic testing condition. A three-dimensional finite element analysis model was constructed. A finite element analysis using ABAQUS was performed to extract the applied stress and strain in the solder joints. Creep deformation was dominant in thermal fatigue and plastic deformation was main parameter for bending failure. From the inelastic energy dissipation per cycle versus fatigue life curve, it can be found that the bending fatigue life is longer than the thermal fatigue life.

  • PDF

I형강 합성 중공바닥판의 극한거동 (Ultimate Behavior of I-beam Composite Hollow Slabs)

  • 심창수;정영수;김대호;박창규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.177-180
    • /
    • 2003
  • I-beam composite hollow slabs were proposed for long-span slabs and long-span bridges due to their higher stiffness and strength. However, the behavior of the composite slab is quite complicate and allowable stress design method is used for the design of the slab. In this paper, static tests on the composite hollow slabs were performed and their inelastic behavior was investigated. Ultimate strength of the composite slabs were evaluated and the contribution of each I-beam to the flexural strength of the slab was also estimated using the measured strain distribution. From the results of these experiments, I-beam composite hollow slabs can be designed by strength design method.

  • PDF

탄소섬유 보강판(CFRP)으로 보강된 철근콘크리트보의 강성예측에 관한 연구 (The Study of the Strength Prediction of RC Beam with Externally bonded Carbon Fiber Reinforced Plate)

  • 한상훈;최홍식;홍기남;신동주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.763-768
    • /
    • 2000
  • The purpose of this paper is to predict the flexural strengthening of reinforced concrete beams by the external bonding of carbon fiber reinforced plate(CFRP) to the tension face of the beam. Used computational equation is derived by relation of stress an strain. This equation is applied to four-nondamage beam and tow-preloading beam. Six scale beams were tested to evaluate the strength enhancement provided by the CFRP. And describes the strength enhancement provided to the flexural capacity of reinforced concrete beam by the external bonding of CFRP. An inelastic section analysis procedure was developed that accurately predicts the load displacement response of the retrofitted beams.

  • PDF

유사정적실험에 의한 지진이력 철근콘크리트 교각의 내진 연성도 평가 (Seismic Ductility Assessment of RC Bridge Piers With Minor Earthquake Damage By the Quasi Static Test)

  • 이은희;정영수;박창규;김영섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.505-511
    • /
    • 2003
  • Experimental investigation was conducted into the flexure/shear-critical behavior of earthquake-damaged reinforced concrete columns with lap splicing of longitudinal reinforcement in the plastic hinge region. Six test specimens in the aspect ratio of 2,5 were made with test parameters: confinement ratios, lap splices, and retrofitting FRP materials. They were damaged under series of artificial earthquakes of which magnitude could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading simultaneously under a constant axial load, P=$0.1f_{ck}A_g. Residual seismic performance of damaged columns was evaluated and compared to that of the corresponding original columns. Test results show that RC bridge piers with lap-spliced longitudinal steels in the plastic hinge region appeared to fail at low ductility. This was due to the debonding of the lap splice, which resulted from insufficient development of the longitudinal steels. The specimens externally wrapped with composite FRP straps in the potential plastic hinge region indicated significant improvement both in flexural strength and displacement ductility, and strain energy ductility.

  • PDF

콘크리트의 불안정 균열성장에 관한 연구 (A Study on the Unstable Crack Growth of Concrete)

  • 고영주;배주성
    • 대한토목학회논문집
    • /
    • 제11권3호
    • /
    • pp.29-36
    • /
    • 1991
  • 본 연구에서는 ASTM E561-80에서 제안한 방법과는 달리, 반복하중시 측정된 각각의 compliance를 상호비교인자로 활용하여 증가 균열길이를 간접적으로 구하고, 이 값들을 균혈성장 동안에 흡수된 비탄성 에너지를 고려한 변형에너지 해방율개념에 적용하여 구한 저항곡선의 해석으로부터 콘크리트의 불안정 균열성장 개시점을 구하였으며, 또한 굵은골재 최대수치와 시편의 두께변화가 임계파괴인성치에 미치는 영향 등을 고찰하였다.

  • PDF