• 제목/요약/키워드: Inelastic Strain

검색결과 155건 처리시간 0.025초

용접박판형강의 비탄성 좌굴 거동에 대한 연구 (A Study on the Inelastic Buckling Behavior of Welded Thin-Walled Sections)

  • 이상우;권영봉
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.11-18
    • /
    • 1996
  • Inelastic buckling stress of Welded Thin-Walled Steel Sections was investigated by - using Spline Finite Strip Method. Several types of membrane residual stress and nonlinear stress-strain relationship were considered to produce reasonable fits to test results. A simple formula for the inelastic local buckling stress of welded sections was also proposed and compared with Korean Standard Specifications for Highway Bridges.

  • PDF

Constitutive Modeling of Confined Concrete under Concentric Loading

  • Lee, Cha-Don;Park, Ki-Bong;Cha, Jun-Sil
    • KCI Concrete Journal
    • /
    • 제13권1호
    • /
    • pp.69-78
    • /
    • 2001
  • The inelastic behavior of a reinforced concrete columns is influenced by a number of factors : 1) level of axial load, 2) tie spacing, 3) volumetric ratio of lateral steel, 4) concrete strength, 5) distribution of longitudinal steel, 6) strength of lateral steel, 7) cover thickness, 8) configuration of lateral steel, 9) strain gradient, 10) strain rate, 11) the effectively confined concrete core area, and 12) amount of longitudinal steel. A new constitutive model of a confined concrete is suggested in order to investigate the nonlinear behavior of the reinforced concrete columns under concentric loading. The developed constitutive model for the confined concrete takes into account the effects of effectively confined area as well as the horizontal and longitudinal distributions of the confining pressures. None of the existing models incorporated these two main effects at the same time. A total of different six constitutive models for the behavior of the confined concrete under concentric compression were compared with the sixty-one test results reported by different researchers. The superiority of the developed model in its accuracy is demonstrated by evaluating the error function, which compares the weighted averages for the sum of squared relative differences in peak compressive strength and corresponding strain, stress at strain equal to 0.015, and total area under stress-strain curve up to strain equal to 0.015.

  • PDF

Slenderness effects on the simulated response of longitudinal reinforcement in monotonic compression

  • Gil-Martin, Luisa Maria;Hernandez-Montes, Enrique;Aschheim, Mark;Pantazopoulou, Stavroula J.
    • Structural Engineering and Mechanics
    • /
    • 제23권4호
    • /
    • pp.369-386
    • /
    • 2006
  • The influence of reinforcement buckling on the flexural response of reinforced concrete members is studied. The stress-strain response of compression reinforcement is determined computationally using a large-strain finite element model for bars of varied diameter, length, and initial eccentricity, and a mathematical expression is fitted to the simulation results. This relationship is used to represent the response of bars in compression in a moment-curvature analysis of a reinforced concrete cross section. The compression bar may carry more or less force than a tension bar at a corresponding strain, depending on the relative influence of Poisson effects and bar slenderness. Several cross-section analyses indicate that, for the distances between stirrups prescribed in modern concrete codes, the influence of inelastic buckling of the longitudinal reinforcement on the monotonic moment capacity is very small and can be neglected in many circumstances.

The effect of constitutive spins on finite inelastic strain simulations

  • Cho, Han Wook;Dafalias, Yannis F.
    • Structural Engineering and Mechanics
    • /
    • 제5권6호
    • /
    • pp.755-765
    • /
    • 1997
  • Within the framework of anisotropic combined viscoplastic hardening formulation, accounting macroscopically for residual stress as well as texture development at finite deformations of metals, simple shear analyses for the simulation of fixed-end torsion experiments for ${\alpha}$-Fe, Al and Cu at different strain rates are reviewed with an emphasis on the role of constitutive spins. Complicated responses of the axial stresses with monotonically increasing shear deformations can be successfully described by the capacity of orthotropic hardening part, featuring tensile axial stresses either smooth or oscillatory. Temperature effect on the responses of axial stresses for Cu is investigated in relation to the distortion and orientation of yield surface. The flexibility of this combined hardening model in the simulation of finite inelastic strains is discussed with reference to the variations of constitutive spins depending upon strain rates and temperatures.

철근 콘크리트 구조물의 비탄성 해석을 위한 9절점 퇴화 쉘 요소 (A 9-node Degenerated Shell Element for Inelastic Analysis of Reinforced Concrete Structures)

  • 이상진;서정문
    • 한국전산구조공학회논문집
    • /
    • 제14권4호
    • /
    • pp.481-494
    • /
    • 2001
  • 본 논문은 철근 콘크리트 구조물의 비탄성 해석을 수행하기 위하여 개발된 9절점 퇴화 쉘 요소에 대하여 기술하였다. 개발된 쉘 유한요소는 퇴화고체기법과 함께 구조물에서 발생하는 횡 전단 변형효과를 고려하기 위하여 Reissner-Mindlin (RM)가정을 도입하였다. RM가정을 바탕으로 한 퇴화 쉘 요소는 쉘의 두께가 얇거나, 즉 종횡비가 작거나, 균일하지 않은 유한요소망을 사용할 경우 구조물의 강성이 과대하게 계산되는 강성과대현상(Locking phenomenon)이 나타나게 된다. 강성과대현상은 선택적 감차 적분, 비 적합 모드, 가변형도 등을 사용하여 개선하는데 특히 가변형도법에 바탕을 둔 대체변형도는 많은 유한요소에 성공적으로 적용되어 왔다. 그러나 이와는 대조적으로 콘크리트의 비탄성 해석에 가변형도법을 도입하고 그 성능을 조사한 사례는 매우 적다. 따라서 본 연구에서는 가변형도법과 미시적 재료모델을 바탕으로 RM 쉘 요소를 정식화하고 미를 유한요소프로그램으로 개발하였다. 개발된 철근 콘크리트 쉘 요소의 성능은 수치예제를 통하여 검증하였다. 수치예제로부터 개발된 쉘요소를 이용하여 구해진 해석결과가 실험결과 또는 다른 해석결과에 근접함을 알 수 있다.

  • PDF

비탄성 강재 부재의 좌굴 해석 (Buckling Analysis of Inelastic Steel Members)

  • 길흥배
    • 한국강구조학회 논문집
    • /
    • 제12권1호통권44호
    • /
    • pp.29-43
    • /
    • 2000
  • 본 연구에서는 비탄성 부재들의 좌굴 강도를 결정하기 위한 계산적으로 효율적인 비탄성 좌굴해석 프로그램이 개발되었다. 본 프로그램은 휨 좌굴, 휨-비틂 좌굴 혹은 국부좌굴에 의해 붕괴되는 탄성과 비탄성 부재들의 좌굴 강도 및 형상을 결정할 수 있다. 일축 대칭이나 2축 대칭인 I 형 부재를 해석할 수 있다. 복부판은 판 요소를 이용하여 모델되고, 플랜지는 보 요소로 모델되었다. 재료의 비탄성 응력-변형률 관계를 모사하기 위하여 다선형 등방경화 법칙과 증분이론이 사용되었다. 프로그램은 이론치와 실험값들을 이용하여 입증되었다. 프로그램의 결과는 이론치 및 실험값들과 잘 일치였다.

  • PDF

Nb 첨가 오스테나이트계 내열 스테인리스강의 열기계적 피로 수명 및 변형 거동 (Endurance Life and Deformation Behavior under Thermo-mechanical Fatigue of Nb-added Heat Resistant Austenitic Stainless Steel)

  • 오용준;박중철;양원존
    • 대한금속재료학회지
    • /
    • 제49권7호
    • /
    • pp.541-548
    • /
    • 2011
  • Thermomechanical fatigue (TMF) behavior of heat resistant austenitic stainless steel was evaluated in the temperature range from 100$^{\circ}C$ to peak temperatures of 600 to 800$^{\circ}C$; The fatigue lives under TMF conditions were plotted against the plastic strain range and the dissipated energy per cycle. In the expression of the inelastic strain range versus fatigue life, the TMF data obtained at different temperature ranges were located close to a single line with a small deviation; however, when the dissipated energy per cycle, calculated from the area of the stress-strain hysteresis loops at the half of the fatigue life, was plotted against the fatigue life, the data showed greater scattering than the TMF life against the inelastic strain range. A noticeable stress relaxation in the stress-strain hysteresis curve took place at the peak temperatures higher than 700$^{\circ}C$, but all specimens in this study exhibited cyclic hardening behavior with TMF cycles. Recrystallization occurred during the TMF cycle concurrent with the formation of fine subgrains in the recrystallized region, which is considered to cause the cyclic hardening of the steel.

The inelastic buckling of varying thickness circular cylinders under external hydrostatic pressure

  • Ross, C.T.F.;Gill-Carson, A.;Little, A.P.F.
    • Structural Engineering and Mechanics
    • /
    • 제9권1호
    • /
    • pp.51-68
    • /
    • 2000
  • The paper presents theoretical and experimental investigations on three varying thickness circular cylinders, which were tested to destruction under external hydrostatic pressure. The five buckling theories that were presented were based on inelastic shell instability. Three of these inelastic buckling theories adopted the finite element method and the other two theories were based on a modified version of the much simpler von Mises theory. Comparison between experiment and theory showed that one of the inelastic buckling theories that was based on the von Mises buckling pressure gave very good results while the two finite element solutions, obtained by dividing the theoretical elastic instability pressures by experimentally determined plastic knockdown factors gave poor results. The third finite element solution which was based on material and geometrical non-linearity gave excellent results. Electrical resistance strain gauges were used to monitor the collapse mechanisms and these revealed that collapse occurred in the regions of the highest values of hoop stress, where considerable deformation took place.

비탄성 이력응답 및 지진특성을 반영한 변위증폭계수에 관한 연구 (A Study of Displacement Amplification Factors Considering Hysteretic Behavior of Structural Systems and Earthquake Characteristics)

  • 송종걸;김학수
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.777-782
    • /
    • 2007
  • Displacement amplification factor can be used to estimate inelastic displacement demands from elastic displacement demands, The simple formula for displacement amplification factor considering hysteretic behavior of structural system and earthquake characteristics is proposed. And the effects of several parameters such as displacement ductility, strain hardening ratio, period, characteristics of earthquakes and hysteretic models for the displacement amplification factor are evaluated. Accuracy of the proposed formula is evaluated by comparing the displacement amplification factors estimated by existing and proposed formula with those calculated from inelastic time history analysis. The displacement amplification factors by proposed formulas provide a good agreement with those calculated by inelastic time history analysis.

  • PDF

변형률분할법에 의한 12Cr 단조강의 열피로 수명예측 (Thermal-mechanical Fatigue Life Prediction of 12Cr Forged Steel Using Strain Range Partitioning method)

  • 하정수;옹장우;고승기
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1192-1202
    • /
    • 1994
  • Fatigue behavior and life prediction were presented for thermal-mechanical and isothermal low cycle fatigue of 12Cr forged steel used for high temperature applications. In-phase and out-of-phase thermal-mechanical fatigue test at 350 to 600.deg. C and isothermal low cycle fatigue test at 600.deg. C were conducted using smooth cylindrical hollow specimen under strain-control with total strain ranges from 0.006 to 0.015. Cyclic softening behavior was observed regardless of thermal-mechanical and isothermal fatigue tests. The phase difference between temperature and strain in thermal-mechanical fatigue resulted in significantly shorter fatigue life for out-of-phase than for in-phase. The difference in fatigue lives was dependent upon the magnitudes of inelastic strain ranges and mean stresses. Increase in inelastic strain range showed a tendency of intergranular cracking and decrease in fatigue life, especially for out-of-phase thermal-mechanical fatigue. Thermal-mechanical fatigue life prediction was made by partitioning the strain ranges of the hysteresis loops and the results of isothermal low cycle fatigue tests which were performed under the combination of slow and fast strain rates. Predicted fatigue lives for out-of-phase using the strain range partitioning method showed an excellent agreement with the actual out-of-phase thermal-mechanical fatigue lives within a factor of 1.5. Conventional strain range partitioning method exhibited a poor accuracy in the prediction of in-phase thermal-mechanical fatigue lives, which was quite improved conservatively by a proposed strain range partitioning method.