• Title/Summary/Keyword: Inelastic Strain

Search Result 156, Processing Time 0.03 seconds

Seismic Behavior of A 2/5-Scale Steel Structure with Added Viscoelastic Dampers (점탄성 감쇠기를 설치한 2/5 축척 강구조물의 지진하중에 의한 거동연구)

  • Oh, Soon-Taek
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.1
    • /
    • pp.80-87
    • /
    • 1993
  • This paper summarizes an experimental and analytical study on the application of viscoelastic dampers as energy dissipation devices in structural applications. Shaking table tests are carried out on the viscoelastically damped structure and the obtained structural responses are compared to those of the inelastic analysis results for the same test structure with no dampers added. It can be concluded the viscoelastic dampers are effective in reducing excessive vibrations of structures under strong earthquake ground motions. It is also observed that the increase in structure's stiffness by the addition of dampers can not contribute to improving the seismic response of a structure. In general. the reduction of the seismic response by adding the dampers to the structure is mostly resulted from the increased damping effect. It is found that the modal strain energy method can be used to reliably predict the equivalent structural damping. and the seismic response of a viscoelastically damped structure can be accurately estimated by conventional modal analysis techniques.

  • PDF

Rapid bacterial identification using Raman spectroscopy (라만 분광법을 활용한 세균 검측 기술)

  • No, Jee Hyun;Lee, Tae Kwon
    • Korean Journal of Microbiology
    • /
    • v.53 no.2
    • /
    • pp.71-78
    • /
    • 2017
  • Raman microspectroscopy is a promising tool for microbial analysis at single cell level since it can rapidly measure the cell materials including lipids, nucleic acids, and proteins by measuring the inelastic scattering of a molecule irradiated by monochromatic lights. Using Raman spectra provides high specificity and sensitivity in classification of bacteria at the strain level. In addition, a Raman approach coupled with stabled isotope such as $^{13}C$ and $^2H$ is able to detect and quantify general metabolic activity at single cell level. After bacterial detection process by Raman microspectroscopy, interested unculturable cell sorting and single cell genomics can be accomplished by combination with optical tweezer and microfluidic devices. In this review, the characteristics and applications of Raman microspectroscopy were reviewed and summarized in order to provide a better understanding of microbial analysis using Raman spectroscopy.

Yield strength estimation of X65 and X70 steel pipe with relatively low t/D ratio

  • Kim, Jungho;Kang, Soo-Chang;Kim, Jin-Kook;Song, Junho
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.151-164
    • /
    • 2021
  • During the pipe forming process, a steel plate undergoes inelastic behavior multiple times under a load condition repeating tension and compression in the circumferential direction. It derives local reduction or increase of yield strength within the thickness of steel pipes by the plastic hardening and Bauschinger effect. In this study, a combined hardening model is proposed to effectively predict variations of yield strength in the circumferential direction of API-X65 and X70 steel pipes with relatively low t/D ratio during the forming process, which is expected to experience accumulated plastic strain of 2~3%, the typical Lüder band range in a low-carbon steel. Cyclic tensile tests of API-X65 and X70 steels were performed, and the parameters of the proposed model for the steels were calibrated using the test results. Bending-flattening tests to simulate repeated tension and compression during pipe forming were followed for API-X65 and X70 steels, and the results were compared with those by the proposed model and Zou et al. (2016), in order to verify the process of material model calibration based on tension-compression cyclic test, and the accuracy of the proposed model. Finally, parametric analysis for the yield strength of the steel plate in the circumferential direction of UOE pipe was conducted to investigate the effects of t/D and expansion ratios after O-forming on the yield strength. The results confirmed that the model by Zou et al. (2016) underestimated the yield strength of steel pipe with relatively low t/D ratio, and the parametric analysis showed that the t/D and expansion ratio have a significant impact on the strength of steel pipe.

Research on reinforcement mechanism of soft coal pillar anchor cable

  • Li, Ang;Ji, Bingnan;Zhou, Haifeng;Wang, Feng;Liu, Yingjie;Mu, Pengfei;Yang, Jian;Xu, Ganggang;Zhao, Chunhu
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.697-706
    • /
    • 2022
  • In order to explore the stable anchoring conditions of coal side under the mining disturbance of soft section coal pillar in Wangcun Coal Mine of Chenghe Mining Area, the distribution model of the anchoring support pressure at the coal pillar side was established, using the strain-softening characteristics of the coal to study the distribution law of anchoring coal side support pressure. The analytical solution for the reinforcement anchorage stress in the coal pillar side was derived with the inelastic state mechanical model. The results show that the deformation angle of the roadway side and roof increases with the roof subsidence due to the mining influence at the adjacent working face, the plastic deformation zone extends to the depth of the coal side, and the increase of anchorage stress can effectively control the roof subsidence and further deterioration of plastic zone. The roadway height and the peak support pressure have a certain influence on the anchorage stress, the required anchorage stress of the coal side rises with the roadway height and the peak support pressure. The required anchorage stress of the coal pillar side decreases as the cohesion between the coal seam and the roof and floor and the anchor length increases. Then, applied the research result to Wangcun coal mine in Chenghe mining area, the design of anchor cable reinforcement support was proposed for the section of coal pillars side that has been anchored and deformed, which achieved great results and effectively controlled the convergence and deformation of the side, providing a safety guarantee for the roadway excavation and mining.

Layered Section Analysis for PSC Girder with Variable Cross Section Using SI Technique (SI기법을 이용한 변단면 PSC 거더의 층상화 단면해석)

  • Kim, Byeong Hwa;Park, Taehyo;Jeon, Hye-Kwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.581-590
    • /
    • 2010
  • This study introduces a layered sectional analysis for a PSC girder with a vaiable cross section and curved tendons. To consider the shear equilibrium at a concrete layer with curved tendons, the shear stress distribution has been computed at each section. In addition, to improve the convergence to the solution, a system identification technique is newly adopted in the solution process for strain computation. To examine the feasibility of the proposed approach, a static load test has been conducted for a full scale PSC girder with variable cross section. The prediction shows a good agreement with experiment. It is seen that a uniform cross section has the same moment capacity with a variable cross section while the variable cross section has more shear capacity than the uniform cross section. It is also noted that the maximum displacement of a variable cross section is a little smaller than a uniform cross section.

An Equivalent Multi-Phase Similitude Law for Pseudodynamic Test on Small-scale RC Models : Verification Tests (RC 축소모형의 유사동적실험을 위한 Equivalent Multi-Phase Similitude Law : 검증실험)

  • Kim, Nam-Sik;Lee, Ji-Ho;Chang, Sung-Pil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.35-43
    • /
    • 2004
  • Small-scale models have been frequently used for seismic performance tests because of limited testing facilities and economic reasons. However, there are not enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry is not well consistent in the inelastic seismic behavior. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material, added mass is demanded from a volumetric change and scale factor could be limited due to aggregate size. Therefore, it is desirable that different material is used for small-scale models. Thus, a modified similitude law could be derived depending on geometric scale factor, equivalent modulus ratio and ultimate strain ratio. In this study, compressive strength tests are conducted to analyze the equivalent modulus ratio of micro-concrete to normal-concrete. Then, equivalent modulus ratios are divided into multi-phase damage levels, which are basically dependent on ultimate strain level. Therefore, an algorithm adaptable to the pseudodynamic test, considering equivalent multi-phase similitude law based on seismic damage levels, is developed. Test specimens, consisted of prototype structures and 1/5 scaled models as a reinforced concrete column, were designed and fabricated based on the equivalent modulus ratios already defined. Finally quasistatic and pseudodynamic tests on the specimens are carried out using constant and variable modulus ratios, and correlation between prototype and small-scale model is investigated based on their test results. It is confirmed that the equivalent multi-phase similitude law proposed in this study could be suitable for seismic performance tests on small-scale models.

Development of a Coupled Eulerian-Lagrangian Finite Element Model for Dissimilar Friction Stir Welding (Coupled Eulerian-Lagrangian기법을 이용한 이종 마찰교반용접 해석모델 개발)

  • Lim, Jae-Yong;Lee, Jinho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.7-13
    • /
    • 2019
  • This study aims to develop a FE Model to simulate dissimilar friction stir welding and to address its potential for fundamental analysis and practical applications. The FE model is based on Coupled Eulerian-Lagrangian approach. Multiphysics systems are calculated using explicit time integration algorithm, and heat generations by friction and inelastic heat conversion as well as heat transfer through the bottom surface are included. Using the developed model, friction stir welding between an Al6061T6 plate and an AZ61 plate were simulated. Three simulations are carried out varying the welding parameters. The model is capable of predicting the temperature and plastic strain fields and the distribution of void. The simulation results showed that temperature was generally greater in Mg plates and that, as a rotation speed increase, not the maximum temperature of Mg plate increased, but did the temperature of Al plate. In addition, the model could predict flash defects, however, the prediction of void near the welding tool was not satisfactory. Since the model includes the complex physics closely occurring during FSW, the model possibly analyze a lot of phenomena hard to discovered by experiments. However, practical applications may be limited due to huge simulation time.

Rheological Behavior of Semi-Solid Ointment Base (Vaseline) in Steady Shear Flow Fields (정상전단유동장에서 반고형 연고기제(바셀린)의 레올로지 거동)

  • Song, Ki-Won;Kim, Yoon-Jeong;Lee, Chi-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.3
    • /
    • pp.137-148
    • /
    • 2007
  • Using a strain-controlled rheometer [Rheometrics Dynamic Analyzer (RDA II)], the steady shear flow properties of a semi-solid ointment base (vaseline) have been measured over a wide range of shear rates at temperature range of $25{\sim}60^{\circ}C$. In this article, the steady shear flow properties (shear stress, steady shear viscosity and yield stress) were reported from the experimentally obtained data and the effects of shear rate as well as temperature on these properties were discussed in detail. In addition, several inelastic-viscoplastic flow models including a yield stress parameter were employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models was examined by calculating the various material parameters (yield stress, consistency index and flow behavior index). Main findings obtained from this study can be summarized as follows : (1) At temperature range lower than $40^{\circ}C$, vaseline is regarded as a viscoplastic material having a finite magnitude of yield stress and its flow behavior beyond a yield stress shows a shear-thinning (or pseudo-plastic) feature, indicating a decrease in steady shear viscosity as an increase in shear rate. At this temperature range, the flow curve of vaseline has two inflection points and the first inflection point occurring at relatively lower shear rate corresponds to a static yield stress. The static yield stress of vaseline is decreased with increasing temperature and takes place at a lower shear rate, due to a progressive breakdown of three dimensional network structure. (2) At temperature range higher than $45^{\circ}C$, vaseline becomes a viscous liquid with no yield stress and its flow character exhibits a Newtonian behavior, demonstrating a constant steady shear viscosity regardless of an increase in shear rate. With increasing temperature, vaseline begins to show a Newtonian behavior at a lower shear rate range, indicating that the microcrystalline structure is completely destroyed due to a synergic effect of high temperature and shear deformation. (3) Over a whole range of temperatures tested, the Herschel-Bulkley, Mizrahi-Berk, and Heinz-Casson models are all applicable and have an almostly equivalent ability to quantitatively describe the steady shear flow behavior of vaseline, whereas the Bingham, Casson,and Vocadlo models do not give a good ability.

Coupled Finite Element Analysis of Partially Saturated Soil Slope Stability (유한요소 연계해석을 이용한 불포화 토사사면 안전성 평가)

  • Kim, Jae-Hong;Lim, Jae-Seong;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.35-45
    • /
    • 2014
  • Limit equilibrium methods of slope stability analysis have been widely adopted mainly due to their simplicity and applicability. However, the conventional methods may not give reliable and convincing results for various geological conditions such as nonhomogeneous and anisotropic soils. Also, they do not take into account soil slope history nor the initial state of stress, for example excavation or fill placement. In contrast to the limit equilibrium analysis, the analysis of deformation and stress distribution by finite element method can deal with the complex loading sequence and the growth of inelastic zone with time. This paper proposes a technique to determine the critical slip surface as well as to calculate the factor of safety for shallow failure on partially saturated soil slope. Based on the effective stress field in finite element analysis, all stresses are estimated at each Gaussian point of elements. The search strategy for a noncircular critical slip surface along weak points is appropriate for rainfall-induced shallow slope failure. The change of unit weight by seepage force has an effect on the horizontal and vertical displacements on the soil slope. The Drucker-Prager failure criterion was adopted for stress-strain relation to calculate coupling hydraulic and mechanical behavior of the partially saturated soil slope.

An Equivalent Multi-Phase Similitude Law for Pseudodynamic Test on Small-scale RC Models (RC 축소모형의 유사동적실험을 위한 Equivalent Multi-Phase Similitude Law)

  • ;;;Guo, Xun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.101-108
    • /
    • 2003
  • Small-scale models have been frequently used for experimental evaluation of seismic performance because of limited testing facilities and economic reasons. However, there are not enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry is not well consistent in the inelastic seismic behavior. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material. added mass is demanded from a volumetric change and scale factor could be limited due to size of aggregate. Therefore, it is desirable that different material is used for small-scale models. Thus, a modified similitude law could be derived depending on geometric scale factor and equivalent modulus ratio. In this study, compressive strength tests are conducted to analyze equivalent modulus ratio of micro-concrete to normal-concrete. Equivalent modulus ratios are divided into multi phases, which are based on ultimate strain level. Therefore, an algorithm adaptable to the pseudodynamic test. considering equivalent multi-phase similitude law based on seismic damage levels, is developed. In addition, prior to the experiment. it is verified numerically if the algorithm is applicable to the pseudodynamic test.