• Title/Summary/Keyword: Inelastic Deformation

Search Result 240, Processing Time 0.024 seconds

Accuracy of combination rules and individual effect correlation: MDOF vs SDOF systems

  • Reyes-Salazar, Alfredo;Valenzuela-Beltran, Federico;de, Leon-Escobedo, David;Bojorquez, Eden;Lopez-Barraza, Arturo
    • Steel and Composite Structures
    • /
    • v.12 no.4
    • /
    • pp.353-379
    • /
    • 2012
  • The accuracy of the 30% and SRSS rules, commonly used to estimate the combined response of structures, and some related issues, are studied. For complex systems and earthquake loading, the principal components give the maximum seismic response. Both rules underestimate the axial load by about 10% and the COV of the underestimation is about 20%. Both rules overestimate the base shear by about 10%. The uncertainty in the estimation is much larger for axial load than for base shear, and, for axial load, it is much larger for inelastic than for elastic behavior. The effect of individual components may be highly correlated, not only for normal components, but also for totally uncorrelated components. The rules are not always inaccurate for large values of correlation coefficients of the individual effects, and small values of such coefficients are not always related to an accurate estimation of the response. Only for perfectly uncorrelated harmonic excitations and elastic analysis of SDOF systems, the individual effects of the components are uncorrelated and the rules accurately estimate the combined response. In the general case, the level of underestimation or overestimation depends on the degree of correlation of the components, the type of structural system, the response parameter, the location of the structural member and the level of structural deformation. The codes should be more specific regarding the application of these rules. If the percentage rule is used for MDOF systems and earthquake loading, at least a value of 45% should be used for the combination factor.

Strengthening of the panel zone in steel moment-resisting frames

  • Abedini, Masoud;Raman, Sudharshan N.;Mutalib, Azrul A.;Akhlaghi, Ebrahim
    • Advances in Computational Design
    • /
    • v.4 no.4
    • /
    • pp.327-342
    • /
    • 2019
  • Rehabilitation and retrofitting of structures designed in accordance to standard design codes is an essential practice in structural engineering and design. For steel structures, one of the challenges is to strengthen the panel zone as well as its analysis in moment-resisting frames. In this research, investigations were undertaken to analyze the influence of the panel zone in the response of structural frames through a computational approach using ETABS software. Moment-resisting frames of six stories were studied in supposition of real panel zone, different values of rigid zone factor, different thickness of double plates, and both double plates and rigid zone factor together. The frames were analyzed, designed and validated in accordance to Iranian steel building code. The results of drift values for six stories building models were plotted. After verifying and comparing the results, the findings showed that the rigidity lead to reduction in drifts of frames and also as a result, lower rigidity will be used for high rise building and higher rigidity will be used for low rise building. In frames with story drifts more than the permitted rate, where the frames are considered as the weaker panel zone area, the story drifts can be limited by strengthening the panel zone with double plates. It should be noted that higher thickness of double plates and higher rigidity of panel zone will result in enhancement of the non-linear deformation rates in beam elements. The resulting deformations of the panel zone due to this modification can have significant influence on the elastic and inelastic behavior of the frames.

Seismic performance of composite plate shear walls with variable column flexural stiffness

  • Curkovic, Ivan;Skejic, Davor;Dzeba, Ivica;De Matteis, Gianfranco
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.19-36
    • /
    • 2019
  • Cyclic behaviour of composite (steel-concrete) plate shear walls (CPSW) with variable column flexural stiffness is experimentally and numerically investigated. The investigation included design, fabrication and testing of three pairs of one-bay one-storey CPSW specimens. The reference specimen pair was designed in way that its column flexural stiffness corresponds to the value required by the design codes, while within the other two specimen pairs column flexural stiffness was reduced by 18% and 36%, respectively. Specimens were subjected to quasi-static cyclic tests. Obtained results indicate that column flexural stiffness reduction in CPSW does not have negative impact on the overall behaviour allowing for satisfactory performance for up to 4% storey drift ratio while also enabling inelastic buckling of the infill steel plate. Additionally, in comparison to similar steel plate shear wall (SPSW) specimens, column "pull-in" deformations are less pronounced within CPSW specimens. Therefore, the results indicate that prescribed minimal column flexural stiffness value used for CPSW might be conservative, and can additionally be reduced when compared to the prescribed value for SPSWs. Furthermore, finite element (FE) pushover simulations were conducted using shell and solid elements. Such FE models can adequately simulate cyclic behaviour of CPSW and as such could be further used for numerical parametric analyses. It is necessary to mention that the implemented pushover FE models were not able to adequately reproduce column "pull-in" deformation and that further development of FE simulations is required where cyclic loading of the shear walls needs to be simulated.

Investigation of shear effects on the capacity and demand estimation of RC buildings

  • Palanci, Mehmet;Kalkan, Ali;Sene, Sevket Murat
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.1021-1038
    • /
    • 2016
  • Considerable part of reinforced concrete building has suffered from destructive earthquakes in Turkey. This situation makes necessary to determine nonlinear behavior and seismic performance of existing RC buildings. Inelastic response of buildings to static and dynamic actions should be determined by considering both flexural plastic hinges and brittle shear hinges. However, shear capacities of members are generally neglected due to time saving issues and convergence problems and only flexural response of buildings are considered in performance assessment studies. On the other hand, recent earthquakes showed that the performance of older buildings is mostly controlled by shear capacities of members rather than flexure. Demand estimation is as important as capacity estimation for the reliable performance prediction in existing RC buildings. Demand estimation methods based on strength reduction factor (R), ductility (${\mu}$), and period (T) parameters ($R-{\mu}-T$) and damping dependent demand formulations are widely discussed and studied by various researchers. Adopted form of $R-{\mu}-T$ based demand estimation method presented in Eurocode 8 and Turkish Earthquake Code-2007 and damping based Capacity Spectrum Method presented in ATC-40 document are the typical examples of these two different approaches. In this study, eight different existing RC buildings, constructed before and after Turkish Earthquake Code-1998, are selected. Capacity curves of selected buildings are obtained with and without considering the brittle shear capacities of members. Seismic drift demands occurred in buildings are determined by using both $R-{\mu}-T$ and damping based estimation methods. Results have shown that not only capacity estimation methods but also demand estimation approaches affect the performance of buildings notably. It is concluded that including or excluding the shear capacity of members in nonlinear modeling of existing buildings significantly affects the strength and deformation capacities and hence the performance of buildings.

Damage mechanism and stress response of reinforced concrete slab under blast loading

  • Senthil, K.;Singhal, A.;Shailja, B.
    • Coupled systems mechanics
    • /
    • v.8 no.4
    • /
    • pp.315-338
    • /
    • 2019
  • The numerical investigations have been carried out on reinforced concrete slab against blast loading to demonstrate the accuracy and effectiveness of the finite element based numerical models using commercial package ABAQUS. The response of reinforced concrete slab have been studied against the influence of weight of TNT, standoff distance, boundary conditions, influence of air blast and surface blast. The results thus obtained from simulations were compared with the experiments available in literature. The inelastic behavior of concrete and steel reinforcement bar has been incorporated through concrete damage plasticity model and Johnson-cook models available in ABAQUS were presented. The predicted results through numerical simulations of the present study were found in close agreement with the experimental results. The damage mechanism and stress response of target were assessed based on the intensity of deformations, impulse velocity, von-Mises stresses and damage index in concrete. The results indicate that the standoff distance has great influence on the survivability of RC slab against blast loading. It is concluded that the velocity of impulse wave was found to be decreased from 17 to 11 m/s when the mass of TNT is reduced from 12 to 6 kg. It is observed that the maximum stress in the concrete was found to be in the range of 15 to $20N/mm^2$ and is almost constant for given charge weight. The slab with two short edge discontinuous end condition was found better and it may be utilised in designing important structures. Also it is observed that the deflection in slab by air blast was found decreased by 60% as compared to surface blast.

Modeling of composite MRFs with CFT columns and WF beams

  • Herrera, Ricardo A.;Muhummud, Teerawut;Ricles, James M.;Sause, Richard
    • Steel and Composite Structures
    • /
    • v.43 no.3
    • /
    • pp.327-340
    • /
    • 2022
  • A vast amount of experimental and analytical research has been conducted related to the seismic behavior and performance of concrete filled steel tubular (CFT) columns. This research has resulted in a wealth of information on the component behavior. However, analytical and experimental data for structural systems with CFT columns is limited, and the well-known behavior of steel or concrete structures is assumed valid for designing these systems. This paper presents the development of an analytical model for nonlinear analysis of composite moment resisting frame (CFT-MRF) systems with CFT columns and steel wide-flange (WF) beams under seismic loading. The model integrates component models for steel WF beams, CFT columns, connections between CFT columns and WF beams, and CFT panel zones. These component models account for nonlinear behavior due to steel yielding and local buckling in the beams and columns, concrete cracking and crushing in the columns, and yielding of panel zones and connections. Component tests were used to validate the component models. The model for a CFT-MRF considers second order geometric effects from the gravity load bearing system using a lean-on column. The experimental results from the testing of a four-story CFT-MRF test structure are used as a benchmark to validate the modeling procedure. An analytical model of the test structure was created using the modeling procedure and imposed-displacement analyses were used to reproduce the tests with the analytical model of the test structure. Good agreement was found at the global and local level. The model reproduced reasonably well the story shear-story drift response as well as the column, beam and connection moment-rotation response, but overpredicted the inelastic deformation of the panel zone.

Shear strengthening of reinforced concrete beams with minimum CFRP and GFRP strips using different wrapping technics without anchoring application

  • Aksoylu, Ceyhun
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.845-865
    • /
    • 2022
  • In this study, the performance of shear deficient reinforced concrete (RC) beams with rectangular cross-sections, which were externally bonded reinforced (EBR) with high strength CFRP and GFRP strips composite along shear spans, has been experimentally and analytically investigated under vertical load. In the study, the minimum CFRP and GFRP strips width over spacing were considered. The shear beam with turned end to a bending beam was investigated by applying different composite strips. Therefore various arising in each of strength, ductility, rigidity, and energy dissipation capacity were obtained. A total of 12 small-scaled experimental programs have been performed. Beam dimensions have been taken as 100×150×1000 mm. Four beams have been tested as unstrengthened samples. This paper focuses on the effect of minimum CFRP and GFRP strip width on behaviours of RC beams shear-strengthened with full-wrapping, U-wrapping, and U-wrapping+longitudinal bonding strips. Strengthened beams showed significant increments for flexural ductility, energy dissipation, and inelastic performance. The full wrapping strips applied against shear failure have increased the load-carrying capacity of samples 53%-63% interval rate. Although full wrapping is the best strengthening choice, the U-wrapping and U-wrapping+longitudinal strips of both CFRP and GFRP bonding increased the shear capacity by 53%~75% compared to the S2 sample. In terms of ductility, the best result has been obtained by the type of strengthening where the S5 beam was completely GFRP wrapped. The experimental results were also compared with the analytically given by ACI440.2R-17, TBEC-2019 and FIB-2001. Especially in U-wrapped beams, the estimation of FIB was determined to be 81%. The estimates of the other codes are far from meeting the experimental results; therefore, essential improvements should be applied to the codes, especially regarding CFRP and GFRP deformation and approaches for longitudinal strip connections. According to the test results, it is suggested that GFRP, which is at least as effective but cheaper than CFRP, may be preferred for strengthening applications.

Seismic control of high-speed railway bridge using S-shaped steel damping friction bearing

  • Guo, Wei;Wang, Yang;Zhai, Zhipeng;Du, Qiaodan
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.479-500
    • /
    • 2022
  • In this study, a new type of isolation bearing is proposed by combining S-shaped steel plate dampers (SSDs) with a spherical steel bearing, and the seismic control effect of a five-span standard high-speed railway bridge is investigated. The advantages of the proposed S-shaped steel damping friction bearing (SSDFB) are that it cannot only lengthen the structural periods, dissipate the seismic energy, but also prevent bridge unseating due to the restraint effectiveness of SSDs in the large relative displacements between the girders and piers. This study first presents a detailed description and working principle of the SSDFB. Then, mechanical modeling of the SSDFB was derived to fundamentally define its cyclic behavior and obtain key mechanical parameters. The numerical model of the SSDFB's critical component SSD was verified by comparing it with the experimental results. After that, parameter studies of the dimensions and number of SSDs, the friction coefficient, and the gap length of the SSDFBs were conducted. Finally, the longitudinal seismic responses of the bridge with SSDFBs were compared with the bridge with spherical bearing and spherical bearing with strengthened shear keys. The results showed that the SSDFB can not only significantly mitigate the shear force responses and residual displacement in bridge substructures but also can effectively reduce girder displacement and prevent bridge unseating, at a cost of inelastic deformation of the SSDs, which is easy to replace. In conclusion, the SSDFB is expected to be a cost-effective option with both multi-stage energy dissipation and restraint capacity, making it particularly suitable for seismic isolation application to high-speed railway bridges.

Application of Headed Bars with Small Head in Exterior Beam-Column Joints Subjected to Reversed Cyclic Loads (반복하중을 받는 외부 보-기둥 접합부에서 작은 헤드를 사용한 Headed Bar적용)

  • Ha, Sang-Su;Choi, Dong-Uk;Lee, Chang-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.411-420
    • /
    • 2007
  • The applicability of headed bars in exterior beam-column joints under reversed cyclic loading was investigated. A total of ten pullout tests were first performed to examine pullout behavior of headed bars subjected to monotonic and cyclic loading with test variables such as connection type between head and bar stem (weld or no weld), loading methods (monotonic or cyclic loading), and head shape (small or large circular head and square head). Two full-scale beam-column joint tests were then performed to compare the structural behavior of exterior beam-column joints constructed using two different reinforcement details: i.e. $90^{\circ}$ standard hooks and headed bars. Both joints were designed following the recommendations of ACI-ASCE Committee 352 for Type 2 performance: i.e. the connection is required to dissipate energy through reversals of deformation into inelastic range. The pullout test results revealed that welded head to the stem did not necessarily result in increased pullout strength when compared to non-welded head. Relatively large circular head resulted in higher peak load than smaller circular and square head. Both beam-column joints with conventional $90^{\circ}$ hooks and headed bars behaved similarly in terms of crack development, hysteresis curves, and peak strengths. The joint using the headed bars showed better overall structural performance in terms of ductility, deformation capacity, and energy dissipation. These experimental results demonstrate that the headed bars using relatively small head can be properly designed far use in external beam-column joint.

Experimental and Analytical Studies on the Non-Linear behaviors of Pre-Stressed Steel H-Beams (프리스트레스트 H형강 거더의 비선형 거동에 대한 실험적 및 이론적 연구)

  • Kim, Moon-Young;Kim, Nak-Kyung;Oh, Yong-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.359-366
    • /
    • 2019
  • Experimental and analytical studies on the behavioral characteristics of a pre-stressed (PS) steel girder are conducted to investigate the effects of deviators on the non-linear inelastic properties of the PS system. In this regard, 4 test specimens consisting of a steel H-beam, a straight cable with eccentricity, anchorages, and deviators are built and failure tests are performed under two-point loading. In addition, in-plane elastic deformation theories for the PS system without a deviator, and with three deviators at regular intervals are analytically formulated and solved using a symbolic calculation technique. To verify the validity of the experimental and the proposed analytical theories, the results obtained using FEM models composed of beam elements, rigid beam elements, and truss cable elements, are compared to the experimental results and the analytical solutions. As a result, it is determined that externally installed un-bonded deviators inhibit flexural deformation of the deformed beam to such an extent that their elastic stiffness, and failure strength are significantly improved compared to those of the PS system without deviators.