• Title/Summary/Keyword: Industry classification

Search Result 1,290, Processing Time 0.025 seconds

Stress Detection System for Emotional Labor Based On Deep Learning Facial Expression Recognition (감정노동자를 위한 딥러닝 기반의 스트레스 감지시스템의 설계)

  • Og, Yu-Seon;Cho, Woo-hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.613-617
    • /
    • 2021
  • According to the growth of the service industry, stresses from emotional labor workers have been emerging as a social problem, thereby so-called the Emotional Labor Protection Act was implemented in 2018. However, insufficient substantial protection systems for emotional workers emphasizes the necessity of a digital stress management system. Thus, in this paper, we suggest a stress detection system for customer service representatives based on deep learning facial expression recognition. This system consists of a real-time face detection module, an emotion classification FER module that deep-learned big data including Korean emotion images, and a monitoring module that only visualizes stress levels. We designed the system to aim to monitor stress and prevent mental illness in emotional workers.

  • PDF

Deep Learning Models for Fabric Image Defect Detection: Experiments with Transformer-based Image Segmentation Models (직물 이미지 결함 탐지를 위한 딥러닝 기술 연구: 트랜스포머 기반 이미지 세그멘테이션 모델 실험)

  • Lee, Hyun Sang;Ha, Sung Ho;Oh, Se Hwan
    • The Journal of Information Systems
    • /
    • v.32 no.4
    • /
    • pp.149-162
    • /
    • 2023
  • Purpose In the textile industry, fabric defects significantly impact product quality and consumer satisfaction. This research seeks to enhance defect detection by developing a transformer-based deep learning image segmentation model for learning high-dimensional image features, overcoming the limitations of traditional image classification methods. Design/methodology/approach This study utilizes the ZJU-Leaper dataset to develop a model for detecting defects in fabrics. The ZJU-Leaper dataset includes defects such as presses, stains, warps, and scratches across various fabric patterns. The dataset was built using the defect labeling and image files from ZJU-Leaper, and experiments were conducted with deep learning image segmentation models including Deeplabv3, SegformerB0, SegformerB1, and Dinov2. Findings The experimental results of this study indicate that the SegformerB1 model achieved the highest performance with an mIOU of 83.61% and a Pixel F1 Score of 81.84%. The SegformerB1 model excelled in sensitivity for detecting fabric defect areas compared to other models. Detailed analysis of its inferences showed accurate predictions of diverse defects, such as stains and fine scratches, within intricated fabric designs.

Developing a Predictive Model of Young Job Seekers' Preference for Hidden Champions Using Machine Learning and Analyzing the Relative Importance of Preference Factors (머신러닝을 활용한 청년 구직자의 강소기업 선호 예측모형 개발 및 요인별 상대적 중요도 분석)

  • Cho, Yoon Ju;Kim, Jin Soo;Bae, Hwan seok;Yang, Sung-Byung;Yoon, Sang-Hyeak
    • The Journal of Information Systems
    • /
    • v.32 no.4
    • /
    • pp.229-245
    • /
    • 2023
  • Purpose This study aims to understand the inclinations of young job seekers towards "hidden champions" - small but competitive companies that are emerging as potential solutions to the growing disparity between youth-targeted job vacancies and job seekers. We utilize machine learning techniques to discern the appeal of these hidden champions. Design/methodology/approach We examined the characteristics of small and medium-sized enterprises using data sourced from the Ministry of Employment and Labor and Youth Worknet. By comparing the efficacy of five machine learning classification models (i.e., Logistic Regression, Random Forest Classifier, Gradient Boosting Classifier, LGBM Classifier, and XGB Classifier), we discovered that the predictive model utilizing the LGBM Classifier yielded the most consistent performance. Findings Our analysis of the relative significance of preference determinants revealed that industry type, geographical location, and employee count are pivotal factors influencing preference. Drawing from these insights, we propose targeted strategic interventions for policymakers, hidden champions, and young job seekers.

A Deep Learning Approach for Intrusion Detection

  • Roua Dhahbi;Farah Jemili
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.89-96
    • /
    • 2023
  • Intrusion detection has been widely studied in both industry and academia, but cybersecurity analysts always want more accuracy and global threat analysis to secure their systems in cyberspace. Big data represent the great challenge of intrusion detection systems, making it hard to monitor and analyze this large volume of data using traditional techniques. Recently, deep learning has been emerged as a new approach which enables the use of Big Data with a low training time and high accuracy rate. In this paper, we propose an approach of an IDS based on cloud computing and the integration of big data and deep learning techniques to detect different attacks as early as possible. To demonstrate the efficacy of this system, we implement the proposed system within Microsoft Azure Cloud, as it provides both processing power and storage capabilities, using a convolutional neural network (CNN-IDS) with the distributed computing environment Apache Spark, integrated with Keras Deep Learning Library. We study the performance of the model in two categories of classification (binary and multiclass) using CSE-CIC-IDS2018 dataset. Our system showed a great performance due to the integration of deep learning technique and Apache Spark engine.

Oomycete pathogens, red algal defense mechanisms and control measures

  • Xianying Wen;Giuseppe C. Zuccarello;Tatyana A. Klochkova;Gwang Hoon Kim
    • ALGAE
    • /
    • v.38 no.4
    • /
    • pp.203-215
    • /
    • 2023
  • Oomycete pathogens are one of the most serious threats to the rapidly growing global algae aquaculture industry but research into how they spread and how algae respond to infection is unresolved, let alone a proper classification of the pathogens. Even the taxonomy of the genera Pythium and Olpidiopsis, which contain the most economically damaging pathogens in red algal aquaculture, and are among the best studied, needs urgent clarification, as existing morphological classifications and molecular evidence are often inconsistent. Recent studies have reported a number of genes involved in defense responses against oomycete pathogens in red algae, including pattern-triggered immunity and effector-triggered immunity. Accumulating evidence also suggests that calcium-mediated reactive oxygen species signaling plays an important role in the response of red algae to oomycete pathogens. Current management strategies to control oomycete pathogens in aquaculture are based on the high resistance of red algae to abiotic stress, these have environmental consequences and are not fully effective. Here, we compile a revised list of oomycete pathogens known to infect marine red algae and outline the current taxonomic situation. We also review recent research on the molecular and cellular responses of red algae to oomycete infection that has only recently begun, and outline the methods currently used to control disease in the field.

Utilizing Machine Learning Algorithms for Recruitment Predictions of IT Graduates in the Saudi Labor Market

  • Munirah Alghamlas;Reham Alabduljabbar
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.113-124
    • /
    • 2024
  • One of the goals of the Saudi Arabia 2030 vision is to ensure full employment of its citizens. Recruitment of graduates depends on the quality of skills that they may have gained during their study. Hence, the quality of education and ensuring that graduates have sufficient knowledge about the in-demand skills of the market are necessary. However, IT graduates are usually not aware of whether they are suitable for recruitment or not. This study builds a prediction model that can be deployed on the web, where users can input variables to generate predictions. Furthermore, it provides data-driven recommendations of the in-demand skills in the Saudi IT labor market to overcome the unemployment problem. Data were collected from two online job portals: LinkedIn and Bayt.com. Three machine learning algorithms, namely, Support Vector Machine, k-Nearest Neighbor, and Naïve Bayes were used to build the model. Furthermore, descriptive and data analysis methods were employed herein to evaluate the existing gap. Results showed that there existed a gap between labor market employers' expectations of Saudi workers and the skills that the workers were equipped with from their educational institutions. Planned collaboration between industry and education providers is required to narrow down this gap.

Leveraging Analytics for Talent Acquisition: Case of IT Sector in India

  • Avik Ghosh;Bhaskar Basu
    • Asia pacific journal of information systems
    • /
    • v.30 no.4
    • /
    • pp.879-918
    • /
    • 2020
  • One of the challenges faced by Talent Acquisition teams today pertains to the acquisition of human resources by matching job descriptions and skillsets desired. It is more so in the case of competitive sectors like the Indian IT sector. There can be various channels for Talent Acquisition and accordingly, the cost and benefits might vary. However, the consequences of a mismatch have an impact on the quality of deliverables, high recruitment expenses and loss of revenue for the organization. With increased and diverse sources of data that are available to organizations today, there is ample opportunity to apply analytics for informed decision making in this field. This paper reveals useful insights that help streamline the Talent Acquisition process in the Indian IT Industry. The paper adopts a data-centric approach to examine the critical determinants for efficient and effective Talent Acquisition process in IT organizations. Selected supervised machine learning algorithms are applied for the analysis of the dataset. The study is likely to help organizations in reassessing their talent acquisition strategy with respect to key parameters like expected cost to company (CTC), candidate sourcing channels and optimal joining period.

Applying Academic Theory with Text Mining to Offer Business Insight: Illustration of Evaluating Hotel Service Quality

  • Choong C. Lee;Kun Kim;Haejung Yun
    • Asia pacific journal of information systems
    • /
    • v.29 no.4
    • /
    • pp.615-643
    • /
    • 2019
  • Now is the time for IS scholars to demonstrate the added value of academic theory through its integration with text mining, clearly outline how to implement this for text mining experts outside of the academic field, and move towards establishing this integration as a standard practice. Therefore, in this study we develop a systematic theory-based text-mining framework (TTMF), and illustrate the use and benefits of TTMF by conducting a text-mining project in an actual business case evaluating and improving hotel service quality using a large volume of actual user-generated reviews. A total of 61,304 sentences extracted from actual customer reviews were successfully allocated to SERVQUAL dimensions, and the pragmatic validity of our model was tested by the OLS regression analysis results between the sentiment scores of each SERVQUAL dimension and customer satisfaction (star rates), and showed significant relationships. As a post-hoc analysis, the results of the co-occurrence analysis to define the root causes of positive and negative service quality perceptions and provide action plans to implement improvements were reported.

Research on features of eco-friendly fashion products for the development of typology of eco-friendly fashion products (친환경 패션제품 유형분류체계 개발을 위한 친환경 패션제품 특성 연구)

  • Eunah Yoh
    • The Research Journal of the Costume Culture
    • /
    • v.32 no.1
    • /
    • pp.86-107
    • /
    • 2024
  • Although interest in eco-friendly fashion products is increasing among scholars and industry leaders, the concept of eco-friendly products remains unclear, preventing consistent assessment of which fashion products are eco-friendly. This study conducted a content analysis of eco-friendly product information from 87 domestic and 102 foreign brands to reveal key standards for categorizing eco-friendly fashion products. Product characteristic information was coded according to the four material-based standards (i.e., organic material, regenerative material, alternative material, and sustainably produced/upcycled material). Consistency between coders was confirmed by Cohen's kappa. In results, eco-friendly fashion products are categorized by four material-based standards and two certification standards (i.e., certified, not certified). Among the four material-based categories, the greatest number of domestic and foreign companies produced eco-friendly products that were classified as the regenerative material group. In addition, companies acquired eco-friendly certifications related to the use of organic, regenerative, and alternative materials. The greatest number of eco-friendly material brands used for eco-friendly fashion products belonged to the regenerative material group. Based on the study results, a typology of eco-friendly products was suggested. This typology can benefit practitioners and academics by highlighting a need for classification system for the eco-friendly fashion products, as well as by providing insight into the categorization of eco-friendly fashion products.

Web Attack Classification via WAF Log Analysis: AutoML, CNN, RNN, ALBERT (웹 방화벽 로그 분석을 통한 공격 분류: AutoML, CNN, RNN, ALBERT)

  • Youngbok Jo;Jaewoo Park;Mee Lan Han
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.4
    • /
    • pp.587-596
    • /
    • 2024
  • Cyber Attack and Cyber Threat are getting confused and evolved. Therefore, using AI(Artificial Intelligence), which is the most important technology in Fourth Industry Revolution, to build a Cyber Threat Detection System is getting important. Especially, Government's SOC(Security Operation Center) is highly interested in using AI to build SOAR(Security Orchestration, Automation and Response) Solution to predict and build CTI(Cyber Threat Intelligence). In this thesis, We introduce the Cyber Threat Detection System by analyzing Network Traffic and Web Application Firewall(WAF) Log data. Additionally, we apply the well-known TF-IDF(Term Frequency-Inverse Document Frequency) method and AutoML technology to classify Web traffic attack type.