This study examines that North American Nursing Diagnosis Association(NANDA) and Home Health Care Classification(HHCC) is appropriate to classify home health care client's nursing problems and suggests a modified nursing diagnosis classification system. Two hundred and forty-nine clients' records at a general hospital were reviewed and nursing problems were diagnosed according to each classification system. Results of this study are as follows. The major client's medical diagnosis are pregnancy, childbirth and puerperium, malignant neoplasm, and benign neoplasm. Of four hundred and sixty-three nursing problems, all nursing problems made a diagnos according to HHCC, while three hundred and eighty-five made a diagnosis according to NANDA. The HHCC diagnosis included 78 more nursing problems than NANDA. The discrepancy in the results may indicate a significant advantage to HHCC diagnosis because HHCC nomenclature was created empirically from hard data. However, this may be due to limitations in the data collection method so determination of which classification system is more useful is difficult to judge. However, nursing components of the HHCC are more concrete and clearer than human response patterns of the NANDA. Also the HHCC facilitates the documentation of patient care by computer, while using a conceptual framework consisting of 20 Care Components based on the nursing process: assessment, diagnosis, outcome identification, planning, implementation and evaluation. Accordingly, the practical application of HHCC is more useful than NANDA. Limitations of this study include a retrospective data collecting method and universality of samples. Further research for various samples that use prospective data collection method is recommended.
Journal of the Korean Data and Information Science Society
/
v.23
no.2
/
pp.235-245
/
2012
Logistic discrimination is an useful statistical technique for quantitative analysis of financial service industry. Especially it is not only easy to be implemented, but also has good classification rate. Generalized additive model is useful for credit scoring since it has the same advantages of logistic discrimination as well as accounting ability for the nonlinear effects of the explanatory variables. It may, however, need too many additive terms in the model when the number of explanatory variables is very large and there may exist dependencies among the variables. Mixtures of factor analyzers can be used for dimension reduction of high-dimensional feature. This study proposes to use the low-dimensional factor scores of mixtures of factor analyzers as the new features in the generalized additive model. Its application is demonstrated in the classification of some real credit scoring data. The comparison of correct classification rates of competing techniques shows the superiority of the generalized additive model using factor scores.
Seo, Kyungae;Bae, Yeon Joung;Park, Jae Hong;Shin, Dong Seok;Rhew, Doug Hee
Journal of Environmental Science International
/
v.28
no.4
/
pp.455-464
/
2019
BAT-AEL(Best Available Techniques Associate Emission Level) is the basis for establishing permissible emission standards for the workplace. Therefore, it is necessary to formulate a regulated BAT-AEL setting methodology that is generally applicable to all relevant industries. For the BAT-AEL settings, various factors should be considered such as the pollutants item, whether the workplace is subject to integrated pollution prevention and control, whether BAT is applicable, the basic data type, the emission classification system, and the suitability of the collected data. Among these factors, it is the most important factor to establish the classification system for the emitting facilities such that the emission characteristics of an industrial facility and its pollutants can be effectively reflected. Furthermore the target of the survey workplace should adhere to the BAT guidelines, even if it is a workplace that is subject to an the integrated environmental system. Certified data (SEMS, TMS, cleanSYS, WEMS, etc.) can be used to prioritize the classification system for the emission facility and the emission levels of pollutants. However, the self-measured data, daily logs, and questionnaire data from the workplace can also be used upon agreement of the relevant TWG. The collected data should only be used only when the facility is operating normally. Data that have been determined to be outliers or inappropriate validation methods should also be excluded. The BAT-AEL can be establish by adhering to the following procedure: 1) investigate all relevant workplaces with in the industry, 2)select workplaces for integrated management, 3)Identify BAT application, 4)identify whether BAT is generally applicable, 5)establish a classification system for emitting facilities, 6)collection available data, 7)verify conformity, 8)remove of outliers, 9)prepare the BAT-AEL draft, 10)deliberate, and 11) perform the confirmation procedure.
Journal of the Korea Society of Computer and Information
/
v.26
no.5
/
pp.39-46
/
2021
AI is deeply applied to various algorithms that assists us, not only daily technologies like translator and Face ID, but also contributing to innumerable fields in industry, due to its dominance. In this research, we provide convenience through AI categorization, extracting the only data that users need, with objective classification, rather than verifying all data to find from the internet, where exists an immense number of contents. In this research, we propose a model using LSTM(Long-Short Term Memory Network), which stands out from text classification, and compare its performance with models of RNN(Recurrent Neural Network) and BiLSTM(Bidirectional LSTM), which is suitable structure for natural language processing. The performance of the three models is compared using measurements of accuracy, precision, and recall. As a result, the LSTM model appears to have the best performance. Therefore, in this research, text classification using LSTM is recommended.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.5
/
pp.668-674
/
2022
Machine learning techniques using visual data have high usability in fields of industry and service such as scene recognition, fault detection, security and user analysis. Among these, user analysis through the videos from CCTV is one of the practical way of using vision data. Also, many studies about lightweight artificial neural network have been published to increase high usability for mobile and embedded environment so far. In this study, we propose the network combining the object detection and classification for mobile graphic processing unit. This network detects pedestrian and face, classifies age and gender from detected face. Proposed network is constructed based on MobileNet, YOLOv2 and skip connection. Both detection and classification models are trained individually and combined as 2-stage structure. Also, attention mechanism is used to improve detection and classification ability. Nvidia Jetson Nano is used to run and evaluate the proposed system.
Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
/
v.8
no.3
/
pp.563-570
/
2018
This paper proposes an efficient dissolved gas analysis(DGA) and classification method of an oil-filled transformer using machine learning algorithms to solve problems inherent in IEC 60599. In IEC 60599, a certain diagnosis criteria do not exist, and duplication area is existed. Thus, it is difficult to make a decision without any experts since the IEC 60599 standard can not support analysis and classification of gas date of a power transformer in that criteria. To address these issue. we propose a dissolved gas analysis(DGA) and classification method using a machine learning algorithm. We evaluate the performance of the proposed method using support vector machines with dissolved gas dataset extracted from a power transformer in the real industry. To validate the performance of the proposed method, we compares the proposed method with the IEC 60599 standard. Experimental results show that the proposed method outperforms the IEC 60599 in the classification accuracy.
Seungho Lee;Yoon-Ji Kim;Youngki Kim;Dongmug Kang;Seung Chan Kim;Se-Yeong Kim
Annals of Occupational and Environmental Medicine
/
v.35
/
pp.26.1-26.15
/
2023
Background: The objective of this study is to investigate the differences in incidence rates of targeted diseases by classification of occupations among construction workers in Korea. Methods: In a subject-based cohort of the Korean Construction Worker's Cohort, we surveyed a total of 1,027 construction workers. As occupational exposure, the classification of occupations was developed using two axes: construction business and job type. To analyze disease incidence, we linked survey data with National Health Insurance Service data. Eleven target disease categories with high prevalence or estimated work-relatedness among construction workers were evaluated in our study. The average incidence rates were calculated as cases per 1,000 person-years (PY). Results: Injury, poisoning, and certain other consequences of external causes had the highest incidence rate of 344.08 per 1,000 PY, followed by disease of the musculoskeletal system and connective tissue for 208.64 and diseases of the skin and subcutaneous tissue for 197.87 in our cohort. We especially found that chronic obstructive pulmonary disease was more common in construction painters, civil engineering welders, and civil engineering frame mold carpenters, asthma in construction painters, landscape, and construction water proofers, interstitial lung diseases in construction water proofers. Conclusions: This is the first study to systematically classify complex construction occupations in order to analyze occupational diseases in Korean construction workers. There were differences in disease incidences among construction workers based on the classification of occupations. It is necessary to develop customized occupational safety and health policies for high-risk occupations for each disease in the construction industry.
Recently, with the development of deep learning technology, researches to apply a deep learning algorithm to analyze unstructured data such as text and images are being actively conducted. Text classification has been studied for a long time in academia and industry, and various attempts are being performed to utilize data characteristics to improve classification performance. In particular, a hierarchical relationship of labels has been utilized for hierarchical classification. However, the top-down approach mainly used for hierarchical classification has a limitation that misclassification at a higher level blocks the opportunity for correct classification at a lower level. Therefore, in this study, we propose a methodology for classifying hierarchical data using the autoencoder-based deeply supervised network that high-level classification does not block the low-level classification while considering the hierarchical relationship of labels. The proposed methodology adds a main classifier that predicts a low-level label to the autoencoder's latent variable and an auxiliary classifier that predicts a high-level label to the hidden layer of the autoencoder. As a result of experiments on 22,512 academic papers to evaluate the performance of the proposed methodology, it was confirmed that the proposed model showed superior classification accuracy and F1-score compared to the traditional supervised autoencoder and DNN model.
Differentiation strategies have been suggested as the critical sources of competitive advantage in B2C industry where customers can switch internet shopping mall with one click with virtually no transaction cost. Indeed, competition on low pricing cannot be a viable strategy in B2C industry. Moreover, cultivating customer loyalty to attain profitability is still a challenging task for most internet shopping mall. In this study, we provide empirical analysis results on key managerial variables that indicate the difference between the product categories in terms of customer perception on relative value importance. We first identified comprehensive managerial variables and organized them in terms of customer decision stage. Next, with reference to extant literatures on product characteristics based e-commerce strategy, hypotheses are developed to formalize the customer value differences on the key managerial variables. Empirical testing results indicated that there are significant differences on customer perceived value of the key managerial variables between the product groups. The findings provide useful insight for further study on e-commerce differentiation strategy.
Mechanical facilities in modern buildings and industrial plants become more important in the view points of energy and environment issues. However, mechanical construction fields are still considered as to be subjected to buildings, even though design and construction of mechanical fields in the construction production process is independent of other fields. Recently, 'Framework Act on the Construction Industry' has been revised since 2007. According to the revision, the barrier of general construction and specialized construction is collapsed and the construction company can register any type of construction classification if they are able to carry out the construction mission. The mechanical construction fields are exempt until 2011 because of the protection of mechanical construction industry. In the present study, the bidding system has been prospected due to the revision of 'Basic Law on Construction Industry' after 2011. The trends for development of mechanical construction fields has been also discussed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.