• Title/Summary/Keyword: Industrial-robots

Search Result 492, Processing Time 0.031 seconds

A Study of Solving Maze Escape Problem through Robots' Cooperation (로봇협동을 통한 미로탈출 문제해결 방안)

  • Hong, Ki-Cheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4167-4173
    • /
    • 2010
  • ICT education guidelines revised in 2005 reinforce computer science elements such as algorithm, data structure, and programming covering all schools. It means that goal of computer education is improving problem-solving abilities not using of commercial software. So this paper suggests problem-solving method of maze escape through robots' cooperation in an effort of learning these elements. Problems robots should solve are first-search and role-exchange. First-search problem is that first robot searches maze and send informations about maze to the second robot in real time. Role-exchange problem is that first robot searches maze, but loses its function at any point. At this time second robot takes a role of first robot and performs first robot's missions to the end. To solve these two problems, it goes through four steps; problem analysis, algorithm description, flowchart and programming. Additional effects of our suggestion are chance of cooperation among students and use of queue in data structure. Further researches are use of more generalized mazes, application to real field and a talented curriculum.

Understanding and Research Trends in Liquid Crystal Elastomer Fibers (액정 엘라스토머 섬유의 이해와 연구동향)

  • Young Been Kim;Dae Seok Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.347-356
    • /
    • 2023
  • Liquid crystal elastomer (LCE) fibers have been widely applied in various fields, such as soft robots and biomimetic actuators, in a one-dimensional form. LCEs possess the characteristics of both fluidity and solid order, as well as the elasticity of rubber, and exhibit stimulus-response based on these properties. In particular, by programming the responsiveness to various stimuli such as heat, light, electric fields, and magnetic fields in terms of shape-changing, various movements such as lifting, twisting, and rotating can be realized with high degrees of freedom. Therefore, LCE fibers have the potential for application in various fields such as artificial muscles, soft robots, wearable technologies, and sensing technologies. The research on liquid crystal elastomer fibers is evaluated to have high applicability in various fields in the Fourth Industrial Revolution as a smart material that can include various functionalities beyond simple fibers. In this review, we introduce the structure and basic characteristics of liquid crystal elastomer fibers, the latest research trends on orientation-based fabrication methods, and various applications such as artificial muscles, smart fabrics, and soft robots.

The navigation method of mobile robot using a omni-directional position detection system (전방향 위치검출 시스템을 이용한 이동로봇의 주행방법)

  • Ryu, Ji-Hyoung;Kim, Jee-Hong;Lee, Chang-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.2
    • /
    • pp.237-242
    • /
    • 2009
  • Comparing with fixed-type Robots, Mobile Robots have the advantage of extending their workspaces. But this advantage need some sensors to detect mobile robot's position and find their goal point. This article describe the navigation teaching method of mobile robot using omni-directional position detection system. This system offers the brief position data to a processor with simple devices. In other words, when user points a goal point, this system revise the error by comparing its heading angle and position with the goal. For these processes, this system use a conic mirror and a single camera. As a result, this system reduce the image processing time to search the target for mobile robot navigation ordered by user.

Identification of Gear Noise for Industrial Robots (산업용 로봇의 기어소음 특성 고찰)

  • Kim, Dong-Hae;Lee, Jong-Moon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.152-155
    • /
    • 2002
  • An industrial robot noise has various noise sources such as gears, motors, bearings, and controller fans. Among these, gears are the most dominant source for noise. The gear noise, caused by tooth profile, elastic deformation, machining error and wear, is directly correlated with the transmission error of mating gear. Due to the fact that has several axis and many gears, it is difficult to understand the characteristics of the vibration and noise of robots. In this study, some advanced analysis techniques based on digital signal processing such as power spectrum, time spectral map, RPM map, and etc., were applied for locating the dominant frequency components of the robot noises and identifying their sources. In addition, sound quality analysis was performed in order to evaluate the operator's annoyance. The noise and vibration measurements were carried out at several points during the operation of each axis considering the effect of load and posture of the robot. Eased on the results, proper countermeasures to reduce excessive noise level have been suggested considering the characteristics of sources.

  • PDF

A Comparison of Technological Systems for Industrial Robots in Korea and Sweden

  • Sung, Tae-Kyung
    • Journal of Korea Technology Innovation Society
    • /
    • v.7 no.2
    • /
    • pp.223-255
    • /
    • 2004
  • 이 논문은 Carlsson and Stanklewicz(1991)가 창안한 기술시스템(technological systems)의 개념을 한국과 스웨덴의 산업용로봇에 적용하여, 양자를 비교 분석하고자 하였다. 먼저 기술시스템의 개념을 재구축하고, 동태적인 측면에서 시스템의 진화과정을 보강한 다음, 한국과 스웨덴의 산업용로봇에 대한 기존 연구를 활용하여 양 기술시스템의 중요한 특징들을 비교하고 그 성과를 측정하였다. 한국과 스웨덴에 있어서 산업용로봇 기술시스템의 진화과정은 공히 미국, 일본 등 기술선도국을 모방하는 입장에 있었음에도 불구하고 '학습기간'이 20여 년 이상 소요됨을 보여주었다. 뿐만 아니라 양 시스템의 진화과정. 특히 태동기(embryo stage)에 있어서 정부의 역할이 매우 컸던 것으로 분석되었다. 그러나 기술시스템의 구성요소인 산업네트워크, 기술하부구조, 그리고 제도적하부구조 면에서 강약점 및 특징의 차이가 있음을 발견하였다. 기술시스템의 동태적 성과면에서는 한국의 경우가 스웨덴의 경우보다 상대적으로 더 우월한 것으로 평가되었다. 이는 스웨덴 시스템에서는 초기에 우위를 누렸던 기계, 전기, 그리고 메카트로닉스 기술의 우위와 사용자 능력이 점차 약화되어온 반면에 한국의 시스템은 기술하부구조 등이 취약하였지만 해외시스템과의 연계, 재벌 내에서의 기업간 연계, 산학연 협동, 그리고 지역내 연계 등 시스템내의 연계성이 기술적으로 취약한 부분을 보전해 주었기 때문인 것으로 분석되었다. 따라서 어느 한 기술시스템이 자생적으로 생명력을 이어가기 위해서는 시스템 구성요소의 개별적 형성 및 발전보다는 구성요소간 그리고 시스템내의 다양한 활동주체들의 상호작용과 연계성이 중요함을 강조하였다.

  • PDF

Analysis of Factors for the Success in Entry into Cooperation Robot Market (협동로봇 시장 진출 성공요인 분석)

  • Kim, Shin-Pyo
    • Journal of Industrial Convergence
    • /
    • v.15 no.1
    • /
    • pp.43-52
    • /
    • 2017
  • Robot refers to machines that recognize the external environment and assess the given situations in order to operate autonomously by imitating the manner in which humans behave. Although Korea still lacks global competitiveness, Korea, as the $4^{th}$ ranked robot manufacturing country in the world, is currently expanding the domains of robots from application in manufacturing to application in service provision. Accordingly, this study aims to analyze the factors for the success in entry into the cooperation robot market among various robotic markets in accordance with the literary research method in consideration for the importance of robot industry that could determine the future national competitiveness. The result of the analysis of the factors for the success in entry into the cooperation robot market, shows that factors including analysis of the trends in manufacturing robot market, strategy for benchmarking of the leading cooperation robot companies, activation of small and medium enterprise-centered cooperation robotic industry, excavation of demands for cooperation robots with focus on automobile, semiconductor and IT industries, utilization of the opportunities provided by government's robotic industry policies and standardization of cooperation robot components, etc. determine whether one will succeed in the market or not. Furthermore, it is believed that fortification of competitiveness of the manufacturing sector through the powerful policy support for the robotic industry at government level and policies on cultivation of new growth engine through specialization of the robotic areas closely related to daily life must be implemented concurrently because it is forecasted that competitiveness in robotics technology will become the criterion for national competitiveness in the future.

  • PDF

The Pathplanning of Navigation Algorithm using Dynamic Window Approach and Dijkstra (동적창과 Dijkstra 알고리즘을 이용한 항법 알고리즘에서 경로 설정)

  • Kim, Jae Joon;Jee, Gui-In
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.94-96
    • /
    • 2021
  • In this paper, we develop a new navigation algorithm for industrial mobile robots to arrive at the destination in unknown environment. To achieve this, we suggest a navigation algorithm that combines Dynamic Window Approach (DWA) and Dijkstra path planning algorithm. We compare Local Dynamic Window Approach (LDWA), Global Dynamic Window Approach(GDWA), Rapidly-exploring Random Tree (RRT) Algorithm. The navigation algorithm using Dijkstra algorithm combined with LDWA and GDWA makes mobile robots to reach the destination. and obstacles faced during the path planning process of LDWA and GDWA. Then, we compare on time taken to arrive at the destination, obstacle avoidance and computation complexity of each algorithm. To overcome the limitation, we seek ways to use the optimized navigation algorithm for industrial use.

  • PDF

Smart Factory as a Set of Essential Technologies of 4th Industrial Revolution (4차 산업혁명 요소기술 집합체로써의 스마트팩토리)

  • Seo, Dayoon;Bae, Sung Min
    • Journal of Institute of Convergence Technology
    • /
    • v.7 no.2
    • /
    • pp.21-23
    • /
    • 2017
  • Smart Factories could be regarded as a result of the integration of various key technologies of the fourth industrial revolutions. In smart factory, the IoT (Internet of things) is applied to capture the data generated by the production facility, store and analyze data generated in real time using Big Data technology. In addition, 3D printers are used to print expensive and complex parts, industrial robots supply materials and parts to the production site, store finished products in warehouses. In this paper, we introduced the definition of smart factory and change of job market. Also, we summarize several national policies to support enhancing transformation process of smart factory.

Supervised Hybrid Control Architecture for Navigation of a Personal Robot

  • Shin, Hyun-Jong;Im, Chang-Jun;Kim, Jin-Oh;Lee, Ho-Gil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1178-1183
    • /
    • 2003
  • As personal robots coexist with a person with a role to help a person, while adapting various human life and environment, the personal robots have to accommodate frequently-changing or different-from-home-to-home environment. In addition, personal robots may have many kinds of different Kinematic configurations depending on the capabilities. Some may have a mobile base and others may have arms and a head. The motivation of this study arises from this not-well-defined home environment and varying Kinematic configuration. So the goal of this study is to develop a general control architecture for personal robots. There exist three major architectures; deliberative, reactive and hybrid. We found that these are applicable only for the defined environment with a fixed Kinematic configuration. Neither could accommodate the above two requirements. For the general solution, we propose a Supervised Hybrid Architecture (SHA), in which we use double layers of deliberative and reactive controls, distributed control with a modular design of Kinematic configurations, and real-time Linux OS. Deliberative and reactive actions interact through a corresponding arbitrator. These arbitrators help a robot to choose an appropriate architecture depending on the current situation to successfully perform a given task. The distributed control modules communicate through IEEE 1394 for the easy expandability. With a personal robot platform with a mobile base, two arms, a head and a pan-tilt stereo eye system, we tested the developed SHA for static as well as dynamic environments. For this application, we developed decision-making rules for selecting appropriate control methods for several situations of navigation task. Examples are shown to show the effectiveness.

  • PDF

A Study on the Actuator for Robot Control Using Wireless ZigBee Sensor Networks

  • Shin, Dae-Seob;Lee, Hyeong-Cheol
    • Journal of IKEEE
    • /
    • v.15 no.3
    • /
    • pp.227-234
    • /
    • 2011
  • The Interest in robotics has been steadily increasing in recent times both in Korea as well as abroad. Research on robots for new and diverse fields is ongoing. This study discusses the current research and development on robot actuator, which are used to control the joints of robots, and focuses on developing more efficient technology for joint control, as compared with the current technologies. It also aims to find means to apply the abovementioned technology to diverse industrial fields. We found that easy and effective control of actuators could be achieved by using ZigBee sensor networks, which were widely being used on wireless communications. Throughout the experiments it is proved that the developed wireless actuator could be used for easy control of various robot joints. This technology can be effectively applied to develop two-legged robots that will be able to walk like human, or even quadruped and hexapod robots. It can also be applied to motors used in industry. In this study, we develop an extremely minimized ZigBee sensor network module that can be used to control various servo motors with low power consumption even if it is long distances. We realized effective wireless control by optimizing the ZigBee antenna, and were able to quickly check the status of relevant Tree node through mutual communication between the servo motors composing the ZigBee sensor network and the main server control modules. The developed Servo Motor with ZigBee sensor network modules can be applied in both robotics as well as for home or factory automation.