• 제목/요약/키워드: Industrial waste products

검색결과 234건 처리시간 0.023초

현장 Pilot실험을 통한 산업부산물 혼합토의 수리학적 특성 변화 (Variation of Hydrological Characteristics of Soils Mixed with Industrial By-products by Pilot-Test)

  • 유찬;윤성욱;백승환;박진철;이정훈
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1655-1665
    • /
    • 2008
  • In order to investigate the applicability and suitability of the industrial by-products to landfill final cover, field pilot-scale lysimeter experiments were carried out. The mixture of loamy soil, bottom ash, and construction waste was placed as a cover material in lysimeter($2m{\times}6m{\times}1.2m$) which were constructed with cement brick, and then, volumetric water contents, pF value, and the quantity of runoff and seepage of treatment boxes filled with the mixture of loamy soil and the industrial by-products were monitored from July, 2007 to February, 2008. As a result, the case containing the mixture of bottom ash and loamy soil was most effective in engineering and hydrological properties and water retention ability.

  • PDF

Ethylene Gas Adsorption of Clay-Woodceramics from 3 layers-clay-woodparticleboard

  • Lee, Hwa Hyoung;Kang, Seog-Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • 제31권6호
    • /
    • pp.83-88
    • /
    • 2003
  • The woodceramics are porous amorphous carbon and glassy carbon composite materials. Woodceramics attracted a lot of attention in recent years because they are environmentally friendly and because of their unique functional characteristics such as catalysis, moisture absorption, deodorization, purification, carrier for microbial activity, specific stiffness, corrosion and friction resistance, and their electromagnetic shielding capacity. In this paper, we made new products of clay-woodceramics to investigate the industrial analysis and ethylene gas adsorption for basic data of building- and packging- materials keeping fruit fresh for a long time. Clay-woodceramics were carbonized for 3 h of heating in a special furnace under a gas flow of nitrogen(15 ml/min.) from 3 layers-clay-woodparticleboard made from pallet waste wood, phenol- formaldehyde resin(hereafter PF, Non volatile content:52%, resin content 30%), and clay(10%, 20% and 30%). Carbonization temperature was 400℃, 600℃ and 800℃. Experimental results shows that the higher the carbonization temperature, the higher the fixed carbon and the lower the volatile contents. The higher the clay content, the more the ash content. The higher the carbonization temperature, the more the ethylene gas adsorption. Carbonization temperature of 800℃ gave the best reslts as same as that of white charcoal and activated carbon.(800℃-clay-woodceramic: 5.36 ppm, white charcoal: 5.66 ppm, activated carbon: 5.79 ppm) The clay contents did not make difference of ethylene gas adsoption.

동력학-전달 모델을 활용한 식품 폐기물 감량 해석 (Simulative Calculations of Food Waste Reduction Using Kineto-transport Models)

  • 조선주;김태욱;권성현;조대철
    • 한국환경과학회지
    • /
    • 제30권6호
    • /
    • pp.429-439
    • /
    • 2021
  • Food waste is both an industrial and residential source of pollution, and there has been a great need for food waste reduction. As a preliminary step in this study, waste reduction is quantitatively modeled. This study presents two models based on kinetics: a simple kinetic model and a mass transport-shrinking model. In the simple kinetic model, the smaller is the reaction rate constant ratio k1, the lower the rate of conversion from the raw material to intermediate products. Accordingly, the total elapsed reaction time becomes shorter. In the mass transport-shrinking model, the smaller is the microbial decomposition resistance versus the liquid mass transfer resistance, the greater is the reduction rate of the radius of spherical waste particles. Results showed that the computed reduction of waste mass in the second model agreed reasonably with that obtained from a few experimantal trials of biodegradation, in which the microbial effect appeared to dominate. All calculations were performed using MATLAB 2020 on PC.

난지도 매립지 및 그 주변의 지질환경 연구: 중력 및 자력탐사 (Studies on the Geological Environment of the Nanjido Waste Disposal Site: Gravity and Magnetic Investigations)

  • 권병두;김차섭;정호준;오석훈
    • 자원환경지질
    • /
    • 제28권5호
    • /
    • pp.469-480
    • /
    • 1995
  • Gravity and magnetic surveys were carried out to investigate the three-dimensional configuration and characteristics of the landfills at Nanjido waste disposal site. For terrain correction and three-dimensional density inversion of gravity data an algorithm, which calculates the gravity effect of a three-dimensional body by using the solid angle method, is developed. This algorithm has been proved to give more accurate terrain correction values for the small survey area having varied topography like Nanjido site as compared with widely used methods such as Hammer's method and multiquadric equation method. Density inversion of gravity anomaly data gives very useful information about the lateral and vertical variation of the landfills, which can be used to discriminate the kinds of wastes. The average density of filled materials appears to be $1.7\;g/cm^3$ which is much higher than the value $(0.8\;g/cm^3)$ estimated by Seoul City. The lateral variation of density shows high correlation with the pattern of ongoing depression of the landfills. The northern region of the landfill no. 1, which shows low density and high depression, is closely associated with the industrial waste and sludge filled area. The magnetic anomaly data provide information about relative concentration of magnetic materials, which is also very useful to investigate characteristics of the fills. Several high positive anomaly regions on the reduced-to-pole magnetic anomaly map are appeared to be associated with the industrial waste fills, but certain industrial waste fills show low negative anomalies. This kind of magnetic information can be used in selecting drilling locations over landfills away from buried metal products during the stabilization process.

  • PDF

희소금속 재활용을 위한 ITU-T 국제표준 개발현황 (Status of ITU-T International Standard Development on Rare Metal Recycling)

  • 이미혜;최원정;서석준;김범성
    • 한국분말재료학회지
    • /
    • 제23권4호
    • /
    • pp.325-330
    • /
    • 2016
  • Owing to increasing demand of rare metals present in ICT products, it is necessary to promote the rare metal recycling industry from an environmental viewpoint and to prevent climate change. Despite the fact that information for toxic substances is partly indicated, a legal basis and an international standard indicating usage of rare metals is insufficient. In order to address this issue, a newly created study group of environment and climate change at the ITU (International Telecommunication Union) is doing research to develop methodologies for recycling rare metals from ICT products in an eco-friendly way. Under this group, the Republic of Korea has established two international standards related to rare metals present in ICT products. The first is 'Release of rare metal information for ICT products (ITU-T L.1100)' and the other is 'Quantitative and qualitative analysis methods for rare metals (ITU-T L.1101)'. A new proposal for recommending the provision of rare metal information through a label by manufacturers and consumer/recycling businesses has been approved recently and is supposed to be published later in 2016. Moreover, these recommendations are also being extended to IEC, ISO and other standardization organizations and a strategy to reinforce the ability for domestic standardization is being established in accordance with industrial requirements. This will promote efficient recycling of rare metals from ICT products and will help improve the domestic supply of rare metals.

산업폐기물인 제강 슬래그쇄석을 이용한 콘크리트의 강도특성 (Strength Properies of Concrete Using Waste Slag Aggregates as the Products of Steel Industry)

  • 이봉학;김태경
    • 산업기술연구
    • /
    • 제16권
    • /
    • pp.45-50
    • /
    • 1996
  • An experimental study os performed to examine the feasibility of using wastes steel furnace slag construction materials and its utility as a replacement for the natural resources to prevent the economic loss was investigated. A half factorial exprements was performed with the variables of W/C ratio, S/A, Coarse aggrigate/Slag ratio and slump as a preliminary study for optimum mix design of concrete. The results show that the W/C ratio and Slump ratio are the most important factor to the concrete strength. The substitute of waste Slag up to 100% has little influence, saying that it can substitute the coarse aggregate without damaging the concrete properties.

  • PDF

폐우레탄고무 재활용에 관한 연구 (Studies on Recycling of Waste Polyurethane)

  • 김진국;박광옥;하창식
    • Elastomers and Composites
    • /
    • 제33권1호
    • /
    • pp.3-9
    • /
    • 1998
  • The production of polyurethane polymer has been increased because of their unique properties and variety process methods available. The generation of their wastes also increases with products. These byproducts of industrialization seriously threaten the environmental demanding. Therefore, development of the recycling technologies have been required. The main propose of this study is to develop the recycling technology of waste polyurethane from a footwear scrap. This technique is composed of the following procedure : crushing, devulcanizing, pelletizing, washing and drying. The pellet was characterized with various methods. The recycled polyurethane(RPU) was blended with HIPS(high impact polystyrene) and investigated morphologically and rheologically. The experimental results showed that the addition of 20% HIPS to RPU was limited without mechanical performance of the superial properties of a virgin polyurethane. We believe that these technical information make possible to develop a rational engineering product.

  • PDF

반응표면분석법에 따른 저온소성 경량골재의 킬른공정변수 최적화 (Optimization of Kiln Process Parameters of Low-Temperature Sintering Lightweight Aggregate by Response Surface Analysis)

  • 이한백;서치호
    • 한국세라믹학회지
    • /
    • 제47권5호
    • /
    • pp.365-372
    • /
    • 2010
  • This paper was to evaluate the influence of kiln process parameter(kiln angle, kiln rotating speed) of lightweight aggregate using waste glass and bottom ash with industrial by-products on thermal conductivity, density, water absorption, fracture load and porosity by response surface analysis. In the results of surface plot and contour plot, it has verified that kiln residence time of lightweight aggregate increase as kiln angle and rotating speed decreases. For this reason, pore size and quantity tend to increase by active reaction of forming agent. It seems to be that increase in pore size and quantity have caused decreasing density, fracture load and thermal conductivity, and increasing water absorption. In conclusion, optimization of kiln process parameter on thermal conductivity, density, water absorption, fracture load and porosity by response surface analysis are kiln angle 2.4646%, kiln rotating speed 40.7089 rpm.

폐타이어의 열분해를 통한 에너지화 : 폐폴리프로필렌 첨가 시 열분해 오일의 탈황 효과 (Energy Recovery via Pyrolysis of Waste Tire Rubber : Desulfurization Effect of Pyrolysis Oil by Adding Waste Polypropylene)

  • 정재용;이은도;장원석;오문세;정수화
    • 에너지공학
    • /
    • 제26권3호
    • /
    • pp.97-104
    • /
    • 2017
  • 본 연구에서는 폐타이어의 열분해 특성을 알아보기 위하여 유동층 반응기를 이용하여 450에서 $650^{\circ}C$ 범위에서 급속 열분해를 실시하였다. 반응 온도의 변화에 따른 열분해 오일의 특성을 관찰하고 특히 폐폴리프로필렌을 폐타이어와 혼합하여 열분해를 실시할 때 열분해 부산물 내 황의 거동을 살펴보았다. 열분해 오일의 수율은 반응 온도 $456^{\circ}C$에서 약 52wt.%로 가장 높게 나타났다. 생산된 오일의 GC-MS 분석 결과 반응 온도가 증가할수록 지방족 화합물의 함량은 줄어드는 반면 방향족 화합물의 함량이 급격히 증가하는 것으로 나타났다. 주요 화합물은 리모넨(Limonene), 톨루엔(Toluene), 자일렌(Xylene), 스타이렌(Styrene), 트리메틸벤젠(Trimethylbenzene) 그리고 메틸나프탈렌류(Methylnaphthalenes)이었으며 미량의 황 화합물과 질소 화합물도 검출되었다. 폐폴리프로필렌을 폐타이어와 혼합 열분해 한 결과 열분해 오일 내 황의 함량이 급격히 감소하는 것을 관찰할 수 있었다.

An Insight Into the Recycling of Waste Flexible Polyurethane Foam Using Glycolysis

  • Woo Seok Jin;Pranabesh Sahu;Gyuri Kim;Seongrok Jeong;Cheon Young Jeon;Tae Gyu Lee;Sang Ho Lee;Jeong Seok Oh
    • Elastomers and Composites
    • /
    • 제58권1호
    • /
    • pp.32-43
    • /
    • 2023
  • The worldwide use of polyurethane foam products generates large amounts of waste, which in turn has detrimental effects on the surroundings. Hence, finding an economical and environmentally friendly way to dispose of or recycle foam waste is an utmost priority for researchers to overcome this problem. In that sense, the glycolysis of waste flexible polyurethane foam (WFPF) from automotive seat cushions using different industrial-grade glycols and potassium hydroxide as a catalyst to produce recovered polyol was investigated. The effect of different molecular weight polyols, catalyst concentration, and material ratio (PU foam: Glycols) on the reaction conversion and viscosity of the recovered polyols was determined. The obtained recovered polyols are obtained as single or split-phase reaction products. Besides, the foaming characteristics and physical properties such as cell morphology, thermal stability, and compressive stress-strain nature of the regenerated flexible foams based on the recovered polyols were discussed. It was observed that the regenerated flexible foams displayed good seating comfort properties as a function of hardness, sag factor, and hysteresis loss compared to the reference virgin foam. With the growing demand for a sustainable and circular economy, a global valorization of glycolysis products from polyurethane scraps can be realized by transforming them into profitable substances.