• Title/Summary/Keyword: Industrial ventilation

Search Result 310, Processing Time 0.031 seconds

A Study of Automotive IP Design based on the Driver's Cognitive Characteristics (운전자의 인지특성을 고려한 자동차 IP 설계에 관한 연구)

  • Kang, Seon-Mo;Paik, Seung-Youl;Park, Peom
    • Science of Emotion and Sensibility
    • /
    • v.1 no.2
    • /
    • pp.81-91
    • /
    • 1998
  • 운전자의 안전과 감성적 요구사항이 중요시 되는 차세대 자동차의 IP(Instrument Panel) 설계를 위해 운전자으 인지특성을 고려하였다. 오디어 유닛과 HVAC(Heat, Ventilation and Air Condition)등의 주요 IP 구성요소 설계에 중점을 두었으며, 운전자의 인지특성과 가장부합하는 형태의 IP를 도출하기 위해 인지실험을 실시하였다. 첫 번째로, 기존의 차량에 설계된 IP 궁성요소를 분석하였으며, 이를 바탕으로 버튼의 수와 배열, LCD패널의 위치등을 조합하여 총 16개의 IP 프로토타입을 제작하였다. 다음으로, 제작된 프로타입을 각각 0.2, 0.4, 0.6초의 간격으로 Tachisto scope를 이용하여 피실험자에게 제시한후, 인간의 인지 지도(Human cognitive Map)에 근거한 '그리가 방법(Drawing Method)'을 이용하여 그들의 단기기억(Short-term Memory)상의 정보를 주어진 답안지에 그리도록 하였다. 이 인지실험의 다구찌 분석을 통하여 운전자의 인지특성을 고려한 최적의 IP형태를 제시하였다.

  • PDF

Evaluation of Capture Efficiencies of Push-Pull Hood Systems by Cross Draft Directions and Velocities Using Smoke Visualization Technique (기류 가시화기법을 이용한 방해기류 방향과 속도에 따른 푸쉬풀 후드 효율 평가)

  • Song, Se-Wook;Kim, Tae-Hyeung;Ha, Hyun-Chul;Kang, Ho-Gyung
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.1
    • /
    • pp.36-44
    • /
    • 2005
  • A push pull hood system is frequently applied to control contaminants evaporated from an open surface tank in recent years. Efficiency of push pull hood system is affected by various parameters, such as cross draft, vessel shapes, size of tanks surface, liquid temperature, and so on. Among these, velocity of cross draft might be one of the most influencing factor for determining the ventilation efficiency. To take account of the effect of cross draft velocities over 0.38m/s, a flow adjustment of ${\pm}$20% should be considered into the push and +20% into the pull flow system Although there are many studies about the efficiency evaluation of push pull hood system based on CFDs(Computational Fluid Dynamics) and experiments, there have been no reports regarding the influence of velocities and direction of cross-draft on push-pull hood efficiency. This study was conducted to investigate the influence of cross draft direction and velocities on the capture efficiency of the push-pull ventilation system. Smoke visualization method was used along with mock-up of push-pull hood systems to verify the ventilation efficiency by experiments. When the cross-draft blew from the same origins of the push flows, the efficiency of the system was in it's high value, but it was decreased significantly when the cross-draft came from the opposite side of push flows Moreover, the efficiency of the system dramatically decreased when the cross-draft of open surface tank was faster than 0.4m/s.

A Study on Improvement of Ventilation Efficiency of Multi-Stage Slot Hood (외부식 다단형 슬로트 후드의 효율 향상에 관한 연구)

  • Kim, Hyun Seok;Paik, Nam Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.3 no.2
    • /
    • pp.204-212
    • /
    • 1993
  • This study was conducted to evaluate ventilation efficiency of 4-stage slot hood by variation of slot width, flow rate, hood size and baffle size. The slot velocity, control velocity and plenum velocity were related to slot width and the distance between source of contamination and hood. The results obtained from laboratory experiment for local exhaust ventilation systems were as follows ; 1. When slot widths were constant(equally changed) and the velocity was 6-10 m/s, the slot velocity from 1st slot to 4th slot gradually decreased. As the slot width-to-slot length ratio(WLR) decreased, the slot velocity of each stage increased. But if WLR value was less than 0.04, the slot velocity decreased. 2. When slot velocity exceeded 10 m/s with constant slot widths, the slot velocity of each stage was uniform. 3. When the slot velocity was uniform within 10 m/s and the first slot width was 14-20 mm, the slot width ratio between 1st slot and each of three other slots were 1, 1.25, 1.5 and 3.0, respectively. 4. The slot and plenum velocity were uniform when exhaust flow rate changed from 14 to $19m^3/min$ and there were no hood splitter vanes. 5. When the slot velocity at each stage was uniform, the control velocity at site 30 cm away from hood No.2 increased from 0.15-0.30 to 0.25-0.45 m/s and the control distance from 20 to 30 cm(about 1.5 times).

  • PDF

A Study on Indirect Prediction of Welding Fume Concentrations Using Computational Fluid Dynamics (전산유체역학을 이용한 용접흄농도 간접적 예측가능성 연구)

  • Piao, Cheng Xu;Kim, Tae Hyeung;Seo, Jeoung Yoon;He, Rong Bin;Lim, Jung Ho;Kang, Dae Woong;Ha, Hyun Chul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.4
    • /
    • pp.328-334
    • /
    • 2009
  • There are various methods for welding fume control. These methods can be divided into local exhaust system, general ventilation system and integrated control system. With the general ventilation system, we should have a good prediction tool for testing various appropriate control options. But, until now there are not many studies about how to predict the welding fume concentrations. Especially, the prediction of welding fume concentration is not a very easy task because welding fume is the particulate matters. In this study, we tried to measure $CO_2$ concentrations and welding fume concentrations in a small single room with a small ventilation opening. Using commercially available CFD (Computational Fluid Dynamics) software, we tried to predict $CO_2$ concentrations under the exactly same conditions. Then, we tried to compare the numerical $CO_2concentrations$ with the experimental results to know whether we could predict $CO_2$ concentrations. Then we tried to compare $CO_2$ concentrations with experimental welding fume concentrations to know whether we can use the numerical $CO_2concentrations$ to predict the welding fume concentration indirectly.

A Study on the Radon Concentration in the Office (사무실 내 라돈 농도에 관한 연구)

  • Choi, Hyun Woo;Kim, Chi-Nyon;Won, Jong-Uk;Kim, Hong-Kwan;Roh, Jaehoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.3
    • /
    • pp.334-341
    • /
    • 2016
  • Objectives: This study is aimed at examining radon exposure in offices and the factors that can influence the concentrations. Methods: Indoor radon concentrations in a total of 30 places were measured from January 18 to 21, 2016, targeting six buildings in Seoul with different completion years. The measurement was conducted according to the radon measurement guidelines for indoor air suggested by the Ministry of Environment. Results: As a result of comparing each average concentration, underground area concentration was $42.850{\pm}22.501Bq/m^3$, and that of the ground floors was $27.850{\pm}12.232Bq/m^3$, which was lower than the concentration in the underground areas and statistically significant (p=0.045). As a result of comparing the concentration according to whether or not outside air entered, the average concentration for ventilated areas was $24.876{\pm}11.833Bq/m^3$, and the average concentration for enclosed areas was $47.892{\pm}19.375Bq/m^3$. The concentration in ventilated areas was lower at a statistically significant level (p=0.001). Finally, as a result of the multiple regression analysis for evaluating the factors influencing radon concentration, only ventilation was significant (p=0.007). Conclusions: As a result of measuring radon in office buildings, there was no place that exceeding the recommended standard of the US EPA, but the concentration in poorly ventilated areas was measured to be high. An effort to manage radon concentration and reduce it through the improvement of ventilation systems, repeated measurement is necessary in the future.

A Numerical Analysis of Flow Characteristics and Oil Separation Performance for Cyclone Oil Separator Designs (사이클론 오일분리 장치 형상변화에 따른 유동 및 오일분리 성능에 관한 해석적 연구)

  • Cho, Yong-Seok;Lee, Seang-Wock;Woo, Keun-Sup;Yoon, Yu-Bin;Park, Young-Joon;Lee, Dug-Young;Kim, Hyun-Chul;Na, Byung-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.22-28
    • /
    • 2008
  • A closed type crankcase ventilation system has been adopted to engines to prevent emission of blow-by gas to atmosphere. In the early closed type crankcase ventilation system, blow-by gas which contains engine lubricating oil is re-circulated into the intake system. The blow-by gas containing oil mist leads to increased harmful emissions and engine problems. To reduce loss of the engine oil, a highly-efficient oil separation device is required. Principle of a cyclone oil separator is to utilize centrifugal force in the separator and, therefore, oil separator designs depend on rotational flow which causes the centrifugal force. In this paper, flow characteristics and oil separation performances for cyclone type designs are calculated with CFD methodology. In the CFD model, oil particle was injected on a inlet surface with Rosin-Rammler distribution and uniform distribution. The major design parameters considered in the analysis model are inlet area, cone length and outlet depth of the oil separator. As results, reducing inlet area and increasing cone length increase oil separation performance. Changes in outlet depth could avoid interference between rotational flow and outlet flow in the cyclone oil separator.

Relationship and Characteristics of PM10 and Endotoxin Concentrations in Windowless Poultry Houses in South Korea (일부 밀폐형 무창계사에서 발생하는 PM10 및 엔도톡신의 특성 및 연관성 분석)

  • Kim, Hyocher;Sin, Sojung;Kim, Kyungsu;Jung, Wongeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.31 no.4
    • /
    • pp.331-341
    • /
    • 2021
  • Objectives: The aim of this study was to evaluate the concentrations and relationships of coarse particles with a diameter of 10 ㎛ (PM10) with endotoxins according to the time of measurement in windowless poultry houses. Methods: In this study, measurement was performed on ten windowless poultry houses with a vertically integrated system from July to November. PM10 was measured using personal environmental monitors and polytetrafluoroethylene (PTFE) filters with a 4 L/min-calibrated pump in selected sampling locations (two near the door and two near an exhaust fan). The endotoxin on PTFE filter was analyzed by the LAL turbidimetric method. Results: The range of geometric mean concentrations of PM10 and endotoxins for each of the 38 samples were 0.12-3.30 mg/m3 and 11.9-3553.66 EU/m3, respectively. PM10 and endotoxin concentrations varied by farm, increasing with the decrease in ventilation. The range of the coefficient of determination between PM10 and endotoxin was 0.0009-0.9249. As the atmospheric temperature decreased, it was confirmed that the concentrations of PM10 and endotoxin increased because the volume of ventilation was decreased. Conclusions: Endotoxins were more affected by time of measurement and ventilation than PM10, which means that endotoxins could be an important indicator for intervention programs for improvement of indoor environments.