• Title/Summary/Keyword: Industrial plant monitoring

Search Result 150, Processing Time 0.02 seconds

The Survey on the Technical Trends of Diesel Engine Digital Governors and Prospects of Market in Korea (디젤기관용 디지탈가바나의 연구동향과 한국의 시장전망)

  • Yu, Y.H;Ha, J.S
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.161-161
    • /
    • 1996
  • In this paper the recent studies of digital governor for the Diesel Engine in Korea is summarized and that of usage in the marine and land field as of power plant is analyzed for the interest and development of the enterprise with relation with relation to this industrial part. Our investigation shows that until now the studies on the digitl governor are mainly carried out in KMU and land usage for the power plants is increased gradually because reliance of digital governor is improved and system for the maneuvering and monitoring the plants is computerized.

Design of Multi-protocol IED for Networked Control System of Multi-Induction Motor in Industrial Fields

  • Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.10
    • /
    • pp.60-71
    • /
    • 2012
  • This paper proposes a new design and implementation of multi-protocol IED for networked control system of multi-induction motor in industrial fields. The experimental multi-induction motor based multi-protocol IED of Modbus/LonTalks/TCP/IP module is designed and fabricated. This article addresses issues in architecture of LonWorks/Ethernet sever, embedded processors architecture for converting Modbus protocol to LonTalks protocol, integrating preconfigured software, and Internet technologies. It is also verified that the multi-induction motor control and monitoring system using LonWorks/Ethernet server have available, interoperable, reliable performance characteristics from the experimental results, especially, the seamless integration of TCP/IP networks with control networks allows access to any control point from anywhere. Thus, the results provide available technical data for remote distributed motor control system of industrial field or building microgrid with LonWorks BAS.

Ecological Study of the Marine Algal Community at the Coast of Taean Thermal Power Plant, Korea (태안화력발전소 주변 해조군집의 생태 연구)

  • Yu, Jong-Su;Kim, Yeong-Hwan
    • ALGAE
    • /
    • v.18 no.4
    • /
    • pp.311-320
    • /
    • 2003
  • The community structure of benthic marine algae was investigated at Taean Thermal Power Plant and other places around Taean Peninsula, the west coast of Korea. Total of 100 species including 3 Cyanophyta, 14 Chlorophyta, 18 Phaeophyta, and 65 Rhodophyta were identified. The number of species was highest with 78 species at the Power Plant intake, followed by 61 at the discharge, 56 at Bunjeondo, and 50 at Maoe. It was noteworthy that a subtropical species Caulerpa okamurae was collected at the intake in autumn and it was the first observation in the west coast of Korea. The pattern of vertical algal distribution showed Gloiopeltis furcata occurred in the upper intertidal zone, Sargassum thunbergii and Corallina spp. in the middle and lower zone and Enteromorpha spp. in the lower middle zone. These were all dominant species except for Enteromopha spp., which was subdominant species. Other subdominant species were Chondrus ocellatus and Neorhodomela aculeata. The average diversity indices were between 0.70 and 1.20 at each area based on their dry weight. The similarity index was 0.79 between the algal flora of this study and that of 1987, indicating that the condition of the benthic environment remained unchanged since then. This area maintained its environmental quality, so the algal community remained same with similar structure. This study area seemed a suitable place for long term monitoring of the benthic environment where industrial facilities such as a power plant might affect the benthic algal community.

A Study on Automatic Control Systems for Seawater Desalination Plants (해수 담수화 플랜트 제어 시스템 구성 방안 연구)

  • Ju, Young-Duk;Kim, Kyeong-Beom;Kim, Jin
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.3-9
    • /
    • 2008
  • Recently, the plant industries are being activated and plant control systems use various technologies. Because the optimized design for the plants is very important for the reducing of operation and maintenance costs, automatic control systems become more important. Plant control systems consist of the master controller, the plant networks, the programming environment for engineering, monitoring software and the field devices. The control systems should have reliability, availability and safety. Modular architecture of hardware and software makes flexible configuration of the control systems. Each component should have diagnostic functions. It follows industrial standards and makes open systems. Open systems increase accessibility against the data which is distributed in the plants. The controllers including processor and communication modules use the up-to-date technology. They have real time and fault tolerant function by duplicating processors or networks. It also enables to make the distributed control systems. The distributed architecture makes more scalable main control system. Automatic control systems can be operated with better performance. In this paper, we analyzed the requirements of the seawater desalination plants and made some consideration facts for developing the optimized controller. Also we described the design concept of the main controller, which consists of several modules. We should validate and complement the design for the reliability and better performance.

  • PDF

Changes in Air Quality through the Application of Three Types of Green-Wall Model within Classrooms (교사 내 플랜트 모델 유형별 적용에 따른 공기질 변화)

  • Ho-Hyeong Yang;Hyung-Joo Kim;Sung-Won Bang;Heun-Woo Cho;Hyeong-Seok Lee;Seung-Won Han;Kwang-Jin Kim;Ho-Hyun Kim
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.6
    • /
    • pp.295-304
    • /
    • 2023
  • Background: Adolescents are relatively more sensitive than adults to exposure to indoor pollutants. The indoor air quality in classrooms where students spend time together must therefore be managed at a safe level because it can affect the health of students. Objectives: In this study, three types of green-wall models were applied to classrooms where students spend a long time in a limited space, and the resulting effects on reducing PM were evaluated. Methods: In the middle school classrooms which were selected as the experimental subjects, IoT-based indoor air quality monitoring equipment was installed for real-time monitoring. Three types of plant models (passive, active, and active+light) were installed in each classroom to evaluate the effects on improving indoor air quality. Results: The concentration of PM in the classroom is influenced by outdoor air quality, but repeated increases and decreases in concentration were observed due to the influence of students' activities. There was a PM reduction effect by applying the green-wall model. There was a difference in PM reduction efficiency depending on the type of green-wall model, and the reduction efficiency of the active model was higher than the passive model. Conclusions: The active green-wall model can be used as an efficient method of improving indoor air quality. Additionally, more research is needed to increase the efficiency of improving indoor air quality by setting conditions that can stimulate the growth of each type of plant.

Development of Changing Management Software(K-MOC) for Chemical Plant (화학공장의 변경관리전산시스템(K-MOC) 개발)

  • Kwon, Hyuck-Myun;Baek, Jong-Bae
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.72-78
    • /
    • 2006
  • In many chemical plants the change or modification is carried out without proper technical review and hazard analysis, and also without adequate technical staff and procedures for comprehensive monitoring of potential hazards resulting from the change. Such changes sometimes affect to the process safety badly if it is not managed properly. Therefore, in order to prevent major industrial accidents caused by change or modification, and also in order to apply Management of Change procedure easily in the field and minimize economic burden of company caused by plant changes, K-MOC(KOSHA-Management of Change) software has been developed and provided to the chemical industry.

Research on Using Six Sigma Tool to Reduce the Core Process Time

  • Chung, Yi-Chan;Yen, Tieh-Min;Hsu, Yau-Wen;Tsai, Chih-Hung;Chen, Ching-Piao
    • International Journal of Quality Innovation
    • /
    • v.9 no.1
    • /
    • pp.94-102
    • /
    • 2008
  • When facing the global severe competition, the enterprises all try their best to upgrade the quality, reduce the costs to reach the goal of customer satisfaction. Motorola was the earliest firm creating the term Six Sigma (6 ${\sigma}$); GE was the enterprise successfully fulfilling Six Sigma. The success of these two firms revealed the prominent effects and became the world-class model enterprises. The main purpose of promoting Six Sigma activity was to reduce the possible defects in the business process to the least through designing and monitoring business process in order to reach the goals such as the best quality and efficiency, the lowest costs, the shortest circular process time, maximum profits and customer satisfaction. This research used the Six Sigma technique to improve the business process of ceramics manufacturing plant and find out the major factors of slower core task time by the analytical process of Process Mapping, Pareto Chart, Simu18 simulation software and figures and proposed the improvement measures. Through the confirmation of the case companies, it successfully reduced the core process time and the organizational costs and increased the capacity.

An Experimental Study on the Wear and Vibrational Characteristics Resulted from Rotordynamics System Failure(I) (회전기계 파손에 따른 마멸 및 진동 특성(I))

  • Kang, Ki-Hong;Yoon, Eui-Sung;Chang, Rae-Hyuk;Kong, Ho-Sung;Kim, Seong-Jong;Lee, Yong-Bok;Kim, Chang-Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.43-52
    • /
    • 2001
  • Condition monitoring plays a vital role since it sustains the reliable operation of industrial plant and machinery in the pursuit of economic whole life operation. In order to achieve this goal, it is needed to monitor various parameters of mechanical system such as vibration, wear, temperature, and etc., and finally to diagnosis the root causes of any possible abnormal machine condition. In this work, we constructed a rotor system where various types of functional machine failures occurred frequently in industry were induced. Characteristics of the machine failure were monitored simultaneously by the on-line measurement of vibration, wear and temperature. Result showed that these parameters responded differently to the induced functional machine failure. The availability of each parameter on effective condition monitoring was discussed in this work.

  • PDF

PRINCIPAL COMPONENTS BASED SUPPORT VECTOR REGRESSION MODEL FOR ON-LINE INSTRUMENT CALIBRATION MONITORING IN NPPS

  • Seo, In-Yong;Ha, Bok-Nam;Lee, Sung-Woo;Shin, Chang-Hoon;Kim, Seong-Jun
    • Nuclear Engineering and Technology
    • /
    • v.42 no.2
    • /
    • pp.219-230
    • /
    • 2010
  • In nuclear power plants (NPPs), periodic sensor calibrations are required to assure that sensors are operating correctly. By checking the sensor's operating status at every fuel outage, faulty sensors may remain undetected for periods of up to 24 months. Moreover, typically, only a few faulty sensors are found to be calibrated. For the safe operation of NPP and the reduction of unnecessary calibration, on-line instrument calibration monitoring is needed. In this study, principal component-based auto-associative support vector regression (PCSVR) using response surface methodology (RSM) is proposed for the sensor signal validation of NPPs. This paper describes the design of a PCSVR-based sensor validation system for a power generation system. RSM is employed to determine the optimal values of SVR hyperparameters and is compared to the genetic algorithm (GA). The proposed PCSVR model is confirmed with the actual plant data of Kori Nuclear Power Plant Unit 3 and is compared with the Auto-Associative support vector regression (AASVR) and the auto-associative neural network (AANN) model. The auto-sensitivity of AASVR is improved by around six times by using a PCA, resulting in good detection of sensor drift. Compared to AANN, accuracy and cross-sensitivity are better while the auto-sensitivity is almost the same. Meanwhile, the proposed RSM for the optimization of the PCSVR algorithm performs even better in terms of accuracy, auto-sensitivity, and averaged maximum error, except in averaged RMS error, and this method is much more time efficient compared to the conventional GA method.

Vibration-based structural health monitoring for offshore wind turbines - Experimental validation of stochastic subspace algorithms

  • Kraemer, Peter;Friedmanna, Herbert
    • Wind and Structures
    • /
    • v.21 no.6
    • /
    • pp.693-707
    • /
    • 2015
  • The efficiency of wind turbines (WT) is primarily reflected in their ability to generate electricity at any time. Downtimes of WTs due to "conventional" inspections are cost-intensive and undesirable for investors. For this reason, there is a need for structural health monitoring (SHM) systems, to enable service and maintenance on demand and to increase the inspection intervals. In general, monitoring increases the cost effectiveness of WTs. This publication concentrates on the application of two vibration-based SHM algorithms for stability and structural change monitoring of offshore WTs. Only data driven, output-only algorithms based on stochastic subspace identification (SSI) in time domain are considered. The centerpiece of this paper deals with the rough mathematical description of the dynamic behavior of offshore WTs and with the basic presentation of stochastic subspace-based algorithms and their application to these structures. Due to the early stage of the industrial application of SHM on offshore WT on the one side and the required confidentiality to the plant manufacturer and operator on the other side, up to now it is not possible to analyze different isolated structural damages resp. changes in a systematic manner, directly by means of in-situ measurement and to make these "acknowledgements" publicly available. For this reason, the sensitivity of the methods for monitoring purposes are demonstrated through their application on long time measurements from a 1:10 large scale test rig of an offshore WT under different conditions: undamaged, different levels of loosened bolt connections between tower parts, different levels of fouling, scouring and structure inclination. The limitation and further requirements for the approaches and their applicability on real foundations are discussed along the paper.