• Title/Summary/Keyword: Industrial load

Search Result 2,169, Processing Time 0.026 seconds

Development of Load Profile Monitoring System Based on Cloud Computing in Automotive (클라우드 컴퓨팅 기반의 자동차 부하정보 모니터링 시스템 개발)

  • Cho, Hwee;Kim, Ki-Tae;Jang, Yun-Hee;Kim, Seung-Hwan;Kim, Jun-Su;Park, Keoun-Young;Jang, Joong-Soon;Kim, Jong-Man
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.4
    • /
    • pp.573-588
    • /
    • 2015
  • Purpose: For improving result of estimated remaining useful life in Prognostics and Health Management (PHM), a system which is able to consider a lot of environment and load data is required. Method: A load profile monitoring system was presented based on cloud computing for gathering and processing raw data which is included environment and load data. Result: Users can access results of load profile information on the Internet. The developed system provides information which consists of distribution of load data, basic statistics, etc. Conclusion: We developed the load profile monitoring system for considering much environment and load data. This system has advantages such as improving accessibility through smart device, reducing cost, and covering various conditions.

Development of Industrial Load Control Algorithm for Factory Energy Management System (F-EMS) under Real Time Pricing Environment (실시간요금제하에서 산업용 수용가의 부하제어알고리즘 개발)

  • Jeon, Jeong-Pyo;Jang, Sung-Il;Kim, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.12
    • /
    • pp.1627-1636
    • /
    • 2014
  • In real-time electricity price environment, the energy management system can provide the significant advantage to the residential, commercial and industrial customers since it can reduce the electricity charge by controlling the load operation effectively in response to time-varying price. However, the earlier studies for load management mainly focus on the residential and commercial customers except for the industrial customers because most of load operations in industrial sector are intimately related with production schedule. So, it is possible that the inappropriate control of loads in industrial sector causes huge economic loss. In this paper, therefore, we propose load control algorithm for factory energy management system(F-EMS) to achieve not only minimizing the electricity charges but also maintaining production efficiency by considering characteristics of load operation and production schedule. Considering characteristics of load operation and production schedule, the proposed load control algorithm can reflect the various characteristics of specific industrial customer and control their loads within the range that the production efficiency is maintained. Simulation results show that the proposed load control algorithm for F-EMS leads to significant reduction in the electricity charges and peak power in industrial sector.

Application of peak load for industrial water treatment plant design (공업용수 정수장 설계시 첨두부하 적용방안)

  • Kim, Jinkeun;Lee, Heenam;Kim, Dooil;Koo, Jayong;Hyun, Inhwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.225-231
    • /
    • 2016
  • Peak load rate(i.e., maximum daily flow/average daily flow) has not been considered for industrial water demand planning in Korea to date, while area unit method based on average daily flow has been applied to decide capacity of industrial water treatment plants(WTPs). Designers of industrial WTPs has assumed that peak load would not exist if operation rate of factories in industrial sites were close to 100%. However, peak load rates were calculated as 1.10~2.53 based on daily water flow from 2009 to 2014 for 9 industrial WTPs which have been operated more than 9 years(9-38 years). Furthermore, average operation rates of 9 industrial WTPs was less than 70% which means current area unit method has tendency to overestimate water demand. Therefore, it is not reasonable to consider peak load for the calculation of water demand under current area unit method application to prevent overestimation. However, for the precise future industrial water demand calculation more precise data gathering for average daily flow and consideration of peak load rate are recommended.

Agent-based Shipment Algorithm for Capacitated Vehicle Routing Problem with Load Balancing (CVRP를 위한 에이전트 기반 Shipment 알고리듬 개발)

  • Oh, Seog-Chan;Yee, Shang-Tae;Kim, Taioun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.32 no.3
    • /
    • pp.200-209
    • /
    • 2006
  • Load building is an important step to make the delivery supply chain efficient. We present a family of load makeup algorithms using market based control strategy, named LoadMarket, in order to build efficient loads where each load consists of a certain number of finished products having destinations. LoadMarket adopts Clark-Wright algorithm for generating initial endowment for Load Traders who cooperate to minimize either total travel distance or the variance with respect to the travel distances of loads by means of the spot market or double-sided auction market mechanism. The efficiency of the LoadMarket algorithms is illustrated using simulation based experiments.

Industrial load forecasting using the fuzzy clustering and wavelet transform analysis

  • Yu, In-Keun
    • Journal of IKEEE
    • /
    • v.4 no.2 s.7
    • /
    • pp.233-240
    • /
    • 2000
  • This paper presents fuzzy clustering and wavelet transform analysis based technique for the industrial hourly load forecasting fur the purpose of peak demand control. Firstly, one year of historical load data were sorted and clustered into several groups using fuzzy clustering and then wavelet transform is adopted using the Biorthogonal mother wavelet in order to forecast the peak load of one hour ahead. The 5-level decomposition of the daily industrial load curve is implemented to consider the weather sensitive component of loads effectively. The wavelet coefficients associated with certain frequency and time localization is adjusted using the conventional multiple regression method and the components are reconstructed to predict the final loads through a five-scale synthesis technique. The outcome of the study clearly indicates that the proposed composite model of fuzzy clustering and wavelet transform approach can be used as an attractive and effective means for the industrial hourly peak load forecasting.

  • PDF

The Analysis of Low Back Loading and Muscle Fatigue while Lifting an Asymmetric Load (비대칭무게중심을 지닌 물체 들기 작업시 허리부위 등근육 부하 및 피로 분석)

  • Han, Seung-Jo;Kim, Sun-Uk
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.2
    • /
    • pp.30-36
    • /
    • 2012
  • This study is aimed to show that an asymmetric load in the frontal plane leads to an increase in low back loading and fatigue in comparison with a symmetric load when workers lift an external weight by investigating previous studies and verifying the phenomenon with an experiment. Ten male subjects are required to lift and hold an given external load at 70cm height during 50sec, then the EMG amplitude and median frequency on bilateral low back muscle groups (Longissimus, Iliocostalis, and Multifidus) are recorded and analyzed. Independent variables are two-level load weight (13kg, 20kg) and three-level LCG (Center, 6.5cm to the right, and 13cm to the right), and dependent variables are EMG amplitude average, difference, and Fatigue Index (FI). Results show that load weight increases significantly amplitude average and FI, but LCG does significantly amplitude difference and FI significantly (P-value < 0.05). Also the correlation coefficient between amplitude difference and FI is over 0.99. These implies that trunk loading should be explained by not EMG amplitude but muscle fatigue aspect since the association between an external load and amplitude is linear, but the relationship between an external load and median frequency as muscle fatigue index is almost exponential.

Dedication Load Based Dispatching Rule for Load Balancing of Photolithography Machines in Wafer FABs (반도체 생산 공정에서 포토장비의 부하 밸런싱을 위한 Dedication 부하 기반 디스패칭 룰)

  • Cho, Kang Hoon;Chung, Yong ho;Park, Sang Chul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.22 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • This research develops dispatching rule for a wafer FABs with dedication constraints. Dedication, mostly considered in a photolithography step, is a feature in a modern FABs in order to increase the yield of machines and achieve the advance of manufacturing technology. However, the dedication has the critical problem because it causes dedication load of machines to unbalance. In this paper, we proposes the dedication load based dispatching rule for load balancing in order to resolve the problem. The objective of this paper is to balance dedication load of photo machines in wafer FABs with dedication constraint. Simulation experiments show that the proposed rule improves the performance of wafer FABs as well as load balance for dedication machines compared to open-loop control based conventional dispatching rule.

A Study on Simultaneous Load Factor of Intelligent Electric Power Reduction System in Korea (한국의 지능형 전력동시부하율 저감시스템에 관한 연구)

  • Kim, Tae-Sung;Lee, Jong-Hwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.1
    • /
    • pp.24-31
    • /
    • 2012
  • This study is designed to predict the overall electric power load, to apply the method of time sharing and to reduce simultaneous load factor of electric power when authorized by user entering demand plans and using schedules into the user's interface for a certain period of time. This is about smart grid, which reduces electric power load through simultaneous load factor of electric power reduction system supervision agent. Also, this study has the following characteristics. First, it is the user interface which enables authorized users to enter and send/receive such data as demand plan and using schedule for a certain period of time. Second, it is the database server, which collects, classifies, analyzes, saves and manages demand forecast data for a certain period of time. Third, is the simultaneous load factor of electric power control agent, which controls usage of electric power by getting control signal, which is intended to reduce the simultaneous load factor of electric power by the use of the time sharing control system, form the user interface, which also integrate and compare the data which were gained from the interface and the demand forecast data of the certain period of time.

A Study on the Single Side Strain Gauge Attatched Load Cell and Temperature Compensation (단일면에 스트레인게이지를 부착한 로드셀과 그 온도 보상에 관한 연구)

  • Park, Chan-Won;Choi, Gyu-Seok
    • Journal of Industrial Technology
    • /
    • v.13
    • /
    • pp.19-24
    • /
    • 1993
  • Compensation of temperature is very important to make high precision load cell. In this study, we developed a new type load cell. The structure of the load cell has four strain gauges on single side of the load cell beam. Also a new temperature compensation method was proposed and these characteristics were better than previous one. This study will offer application to other type of load cell and another sensors.

  • PDF

Analysis of the Travel Distance in the Multiple-load Carrying Automated Guided Vehicle Systems (다부하를 운반하는 무인운반차시스템에서 운반거리의 분석)

  • Chang Suk-Hwa
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.1
    • /
    • pp.55-63
    • /
    • 2005
  • This paper is to analyze the travel distance and the transport size of the vehicle when the AGV carries multiple-load in the tandem automated guided vehicle systems. The size of multiple-load represents the number of load that the AGV can carry simultaneously. The AGV can carry simultaneously multiple-load that load types are different. The transport system of the manufacturing system is a tandem configuration automated guided vehicle system, which is based on the partitioning of all the stations into several non-overlapping single closed loops. Each loop divided has only one vehicle traveling unidirectionally around it. The AGV of each loop has to have sufficient transport capacity that can carry all loads for given unit time. In this paper, the average loaded travel distance and the size of feasible multiple-load of the vehicle are analyzed. A numerical example is shown.