• Title/Summary/Keyword: Industrial chemical

Search Result 5,741, Processing Time 0.048 seconds

Fuzzy Learning Control: Application to an Industrial Polymerization Reactor

  • Seokho-Yi;Park, Sunwon-
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1106-1108
    • /
    • 1993
  • This paper deals with an industrial application of a fuzzy feedback combined learning control to an industrial batch free radical polymerization reactor. As a result, the plant has reduced the batch reaction time by 50 minute and stabilized both by 40 percent reduction of the standard deviations of product qualities, such as the total solid content and the graft gum, and by 45 percent reduction of the standard deviation of the batch reaction end time.

  • PDF

Carbonylation of Protected or Non-protected 2-Bromobenzaldehyde Catalyzed by Cobalt Carbonyl

  • Sang Chul Shim;Dong Yup Lee;Heung Jin Choi;Chil Hoon Doh;Keun Tai Huh
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.9
    • /
    • pp.772-774
    • /
    • 1994
  • The cobalt catalyzed carbonylation of bromobenzene having protected aldehyde group gives the corresponding ester in good yields, but 2-bromobenzaldehyde gives 3-alkoxyphthalide in the noticeable yield instead of alkyl 2-formylbenzoates.

Agent-Based Modeling and Design of Water Reuse Network in Eco-Industrial Park (EIP) (생태산업단지에서 용수재이용 네트워크의 에이전트 기반 모델링 및 설계)

  • Kim, HyunJoo;Yoo, ChangKyoo;Ryu, Jun-Hyung;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.369-375
    • /
    • 2008
  • To achieve zero-emission, one of the main goals of an eco-industrial park (EIP), it is needed to develop an effective water exchange network. The network includes various subsystems and decision making processes, which make the modeling process extremely complicated. Agent-based modeling was used to simulate water exchange network in an EIP. Firm agents were created based on the behavior pattern of firms, and an agent-based model (ABM) was made with the agents, showing the growth of the exchange network. An existing steel and iron making industrial park was chosen as a case study, and the ABM model shows eco-efficient behavior with a decreased environmental cost. Water reuse network based on the ABM model results in 35% decrease of the fresh water supply and 50% reduction of the wastewater generation in EIP. A case study shows that agent-based model can be a powerful tool in modeling and designing complex eco-industrial parks, especially when a part of the system needs to be changed.

Application of Solvent Extraction to the Treatment of Industrial Wastes

  • Shibata, Junji;Yamamoto, Hideki
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.259-263
    • /
    • 2001
  • There are several steps such as slicing, lapping, chemical etching and mechanical polishing in the silicon wafer production process. The chemical etching step is necessary to remove damaged layer caused In the slicing and lapping steps. The typical etching liquor is the acid mixture comprising nitric acid, acetic acid and hydrofluoric acid. At present, the waste acid is treated by a neutralization method with a high alkali cost and balky solid residue. A solvent extraction method is applicable to separate and recover each acid. Acetic acid is first separated from the waste liquor using 2-ethlyhexyl alcohols as an extractant. Then, nitric acid is recovered using TBP(Tri-butyl phosphate) as an extractant. Finally hydrofluoric acid is separated with the TBP solvent extraction. The expected recovered acids in this process are 2㏖/l acetic acid, 6㏖/1 nitric acid and 6㏖/l hydrofluoric acid. The yields of this process are almost 100% for acetic acid and nitric acid. On the other hand, it is important to recover and reuse the metal values contained in various industrial wastes in a viewpoint of environmental preservation. Most of industrial products are made through the processes to separate impurities in raw materials, solid and liquid wastes being necessarily discharged as industrial wastes. Chemical methods such as solvent extraction, ion exchange and membrane, and physical methods such as heavy media separation, magnetic separation and electrostatic separation are considered as the methods for separation and recovery of the metal values from the wastes. Some examples of the application of solvent extraction to the treatment of wastes such as Ni-Co alloy scrap, Sm-Co alloy scrap, fly ash and flue dust, and liquid wastes such as plating solution, the rinse solution, etching solution and pickling solution are introduced.

  • PDF

POLLUTION PREVENTION : ENGINEERING DESIGN AT MACRO-, MESO-, AND MICROSCALES

  • Allen, David T.
    • Clean Technology
    • /
    • v.2 no.2
    • /
    • pp.51-59
    • /
    • 1996
  • Billions of tons of industrial waste are generated annually in industrialized countries. Managing and legally disposing of these wastes costs tens to hundreds of billions of dollars each year, and these costs have been increasing rapidly. The escalation is likely to continue as emission standards become even more stringent around the world. In the face of these rapidly rising costs and rapidly increasing performance standards, traditional end-of-pipe approaches to waste management have become less attractive. The most economical waste management alternatives in many cases have become recycling of the waste or the redesign of chemical processes and products so that wastes are prevented or put to productive use. These strategies of recycling or reducing waste at the source have collectively come to be known as pollution prevention. The engineering challenges associated with pollution prevention are substantial. This presentation will categorize the challenges in three levels. At the most macroscopic level, the flow of materials in our industrial economy, from natural resource extraction to consumer product disposal, can be redesigned. Currently, most of our raw materials are virgin natural resources that are used once, then discarded. Studies in what has come to be called industrial ecology examine the material efficiency of large-scale industrial systems and attempt to improve that efficiency. A second level of engineering challenges is found at the scale of individual industrial facilities, where chemical processes and products can be redesigned so that waste is reduced. Finally, on a molecular level, chemical synthesis pathways, combustion reaction pathways, and other material fabrication procedures can be redesigned to reduce emissions of pollution and unwanted by-products. All of these design activities, shown in Figure 1, have the potential to prevent pollution. All involve the tools of engineering, and in particular, chemical engineering.

  • PDF

Carbonylation of Bromo(Bromomethyl)Benzenes to Alkyl Carboalkoxyphenylacetates Catalyzed by Cobalt Carbonyl

  • Shim, Sang-Chul;Doh, Chil-Hoon;Lee, Dong-Yub;Youn, Young-Zoo;Lee, Seung-Yub;Chae, Shin-Ae;Oh, Dae-Hee;Oh, Hun-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.1
    • /
    • pp.45-48
    • /
    • 1992
  • A synthetic method for bis-carbonylation of bromo(bromomethyl)benzenes was described. Alkyl carboalkoxyphenylacetates were easily prepared by the carbonylation of benzylic and arylic bromide moieties in bromo(bromomethyl)benzenes with alcohols in the presence of $K_2CO_3,\;CH_3I$, and a catalytic amount of cobalt carbonyl under the atmospheric pressure of carbon monoxide at room temperature in good to excellent yields. The base played a decisive role in the selectivity of product and $K_2CO_3$ was the best one among bases used.

Equipment Reliability Database for Chemical Plants (화학공장 설비 및 기기에 대한 신뢰도 데이터베이스 구축)

  • Ko Jae-Wook;Kwon Hyuk-Myun
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.1 s.30
    • /
    • pp.13-18
    • /
    • 2006
  • Chemical plants should perform Quantitative Risk Assessment that evaluates types of accident, frequency and damage which can happen through using the hazardous equipment and the hazardous materials for preventing and preparing industrial disasters. It is necessary that Chemical plants should include the reliability database which efficiently evaluate the Quantitative Risk Assessment. So in this study, we suggest a which methodology applies Quantitative Risk Assessment on the basis of the constructed data to imply the reliability of industrial facilities and equipment, collection of reliability data, system analysis and development of software.

  • PDF