• Title/Summary/Keyword: Industrial byproducts

Search Result 102, Processing Time 0.037 seconds

SEM Analysis Property of Non-cement Light-weight Matrix according to Type and Mixing Ratio of Alkali Activator (알칼리자극제 종류 및 혼입율에 따른 무시멘트 경량 경화체의 SEM분석 특성)

  • Shin, Jin-Hyun;Kim, Tae-Hyun;Lee, Dong-Hoon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.161-162
    • /
    • 2017
  • As the use of cement increases with the development of modern society along with the increase of buildings, environmental pollution intensifies and researches on industrial byproducts are continuing. Research on blast furnace slag and fly ash as industrial byproducts is increasing, and research on industrial byproducts such as polysilicon sludge and paper ash used in this study is increasing. Blast furnace slag, which is one of the industrial byproducts, has been widely studied as a material used with cement. However, in this study, we fabricated lightweight matrix of polysilicon sludge and paper ash replaced based on blast furnace slag, and performed SEM analysis.

  • PDF

A Study on the Specialized Mix Design of Mine Sprayed Concrete Using Industrial Byproducts (산업부산물(産業副産物)을 이용(利用)한 광산(鑛山) 스프레이 콘크리트의 물성연구(物性硏究))

  • Ma, Sang-Joon
    • Resources Recycling
    • /
    • v.22 no.3
    • /
    • pp.18-27
    • /
    • 2013
  • In this study, it was developed eco-friendly mix design of mine sprayed concrete, which satisfies both the stability and economics by mixing the industrial in cement, for development of the mine sprayed concrete and recycling of industrial. From this research, it is found that mixing of mineral admixture is effective on strength enhancement. Also, it is considered that designed mixing ratio of sprayed concrete using industrial byproducts should be applied to the field through field test.

Cellulose-based Nanocrystals: Sources and Applications via Agricultural Byproducts

  • Seo, Yu-Ri;Kim, Jin-Woo;Hoon, Seonwoo;Kim, Jangho;Chung, Jong Hoon;Lim, Ki-Taek
    • Journal of Biosystems Engineering
    • /
    • v.43 no.1
    • /
    • pp.59-71
    • /
    • 2018
  • Purpose: Cellulose nanocrystals (CNCs) are natural polymers that have been promoted as a next generation of new, sustainable materials. CNCs are invaluable as reinforcing materials for composites because they can impart improved mechanical, chemical, and thermal properties and they are biodegradable. The purpose of this review is to provide researchers with information that can assist in the application of CNCs extracted from waste agricultural byproducts (e.g. rice husks, corncobs, pineapple leaves). Methods & Results: This paper presents the unique characteristics of CNCs based on agricultural byproducts, and lists processing methods for manufacturing CNCs from agricultural byproducts. Various mechanical treatments (microfluidization and homogenization) and chemical treatments (alkali treatment, bleaching and hydrolysis) can be performed in order to generate nanocellulose. CNC-based composite properties and various applications are also discussed. Conclusions: CNC-based composites from agricultural byproducts can be combined to meet end-use applications such as sensors, batteries, films, food packaging, and 3D printing by utilizing their properties. The review discusses applications in food engineering, biological engineering, and cellulose-based hydrogels.

Production of high molecular weight of pullulan with agro-industrial byproducts

  • Seo, Hyeong-Pil;Jeong, Dae-Yeong;Jin, Hyeok;Jeong, Dae-Il;Kim, Seong-Gu;Zhan, Xiaobei;Lee, Jin-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.352-355
    • /
    • 2000
  • Production of pullulan by Aureobasidium pullulans HP-2001 with agro-industrial byproducts was investigated. Agro-industrial byproducts from the rice processing industry for the traditional Korean food (AIB-A), apple juice production (AIB-B), and soybean sauce production (AIB-C) were used for carbon and nitrogen source for production of pullulan. Major components of AIB-A were glucose, maltose, maltotriose, and dextran. AIB-A and B were found to be good substitute to glucose as carbon source. Productivity of pullulan with AIB-A and B as carbon source was similar to that glucose. Molecular weight of pullulan produced with AIB-A and B was higher than that with glucose. Major components of AIB-B and C were carbohydrate, protein, fat and ash. AIB-C was also a good substitute to yeast extract as nitrogen source. Some of physiological conditions were examined for the large scale production of pullulan.

  • PDF

Characteristic of Alkali-Activated Cement Mortar using Active Slag Binder Manufactured by Industrial Byproduct (산업부산물로 제조된 활성 슬래그 바인더를 활용한 알칼리활성화 시멘트 모르타르의 특성)

  • Hwang, Byoung Il;Kang, Hye Ju;Lee, Hoo Suk;Kang, Suk Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.240-241
    • /
    • 2018
  • In this paper, we tried to find the proper ratio of industrial byproducts which can express mechanical characteristics similar to ordinary portland cement by varying the ratio of industrial byproducts. as a result, the activated slag binder produced by the industrial byproduct in this study increased in compressive strength as the ratio of blast furnace slag increased and the fly ash ratio decreased.

  • PDF

Evaluation of Some Agri-industrial By-products Available in Samoa for Goats

  • Aregheore, E.M.;Abdulrazak, S.A.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.11
    • /
    • pp.1593-1598
    • /
    • 2003
  • Nutritional evaluation of some agro-industrial byproducts available in Samoa [dry brewers' grains (DBG), cocoa shell (CS), cocoa dust (CD) and desiccated coconut waste meal (DCWM)] available in Samoa was carried out using both the in vivo and in vitro techniques. In the in vivo study 24 Anglo-nubian goats were offered by-products with other feed ingredients to compound four different diets. The goats were randomly allocated to 4 diets on the basis of liveweight (18.7-0.3kg). The ADF content of the byproducts followed a similar trend to NDF. The byproducts have a high content of organic matter (91.0-95.4%). Gross energy (GE) content was higher in DCWM (25.1 MJ/kg DM), closely followed by CD (23.2 MJ/kg DM). Concentrate intake was significantly different (p<0.05) among the goats. Average daily live weight gains were 105, 92, 88 and 97 g/goat/day for DBG, CS, CD and DCWM, respectively. Daily live weight gains were higher (p<0.05) in the goats that received DBG, while the least gain was obtained in the goats that received CS byproduct diet. DM digestibility was significantly higher (p<0.05) in the goats on DBG diet than in the other goats. The least DM digestibility was obtained in the goats that received CD diet (p>0.05). CP digestibility followed a similar pattern to DM digestibility. The digestibility of NDF and ADF was influenced by the nature of the diets. The digestibility of OM and GE were best (p<0.05) in the goats that received DBG, DCWM and CS byproduct diets than in CD. Significant differences (p<0.05) among the byproducts were recorded for net gas production. Potential gas production (a+b) ranged from 7.064 to 42.17 ml. Organic matter digested (OMD) from gas production value at 24 h was higher in DBG (47.6 g/kg DM) and this was followed by DCWM (42.5 g/kg DM). The least OMD was obtained in CD (17.9 g/kg DM). A significant difference (p<0.05) in DM disappearance after 4, 8, 16, 24, 48 and 72 h was recorded. The potential and effective degradability varied significantly (p<0.05) from 85.95-99.6 g/kg DM and from 39.9-65.8%, respectively. The digestibility of the byproducts in both the in vivo and in in vitro techniques demonstrated that they are potential source of feed ingredients for ruminant livestock in Samoa and possibly in the other small Pacific Island countries. On the basis of their potential degradability the byproducts could be ranked in the following order:DCWM>DBG>CD>CS. In conclusion, the results obtained suggest that all the byproducts can contribute to ruminant livestock diets without adverse effects on feed intake, growth rate and apparent nutrient digestibility coefficients.

Chemical resistance of Non-Sintered Cement Mortar using Inorganic Industrial Wastes as activator (무기계 산업폐기물을 자극제로 이용한 비소성 시멘트 모르타르의 내화학성)

  • Mun Kyoung Ju;Lee Chol Woong;Park Won Chun;Soh Yang Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.607-610
    • /
    • 2005
  • If cement can be manufactured with industrial byproducts such as granulated blast furnace slag(GBFS), phosphogypsum(PG), and waste lime(WL) instead of clinker as its counterproposal, there would be many advantages, including maximum use of these industrial byproducts for high value-added resources, conservation of natural resources and energy by omitting the use of clinker, minimized environmental pollution problems caused by $CO_2$ discharge, and reduction of the production cost. This research investigates the chemical resistance of NSC mortar added PG and WL to GBFS as sulfate and alkali activators. The result of experiment of chemical resistance, showed that NSC is very excellent in acid resistance and seawater resistanc. Such a reasons are that the hydrate like CSH gel and ettringite formed dense pore structure of NSC matrix.

  • PDF

Chloride ion Permeability of Non-Sintered Cement Concrete using Inorganic Industrial Wastes as activator (무기계 산업폐기물을 자극제로 이용한 비소성 시멘트 콘크리트의 염소이온 침투 저항성)

  • Mun, Kyoung-Ju;Lee, Chol-Woong;Park, Won-Chun;So, Seung-Young;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.453-456
    • /
    • 2006
  • If cement can be manufactured with industrial byproducts such as granulated blast furnace slag(GBFS), phosphogypsum(PG), and waste lime(WL) instead of clinker as its counterproposal, there would be many advantages, including maximum use of these industrial byproducts for high value-added resources, conservation of natural resources and energy by omitting the use of clinker, minimized environmental pollution problems caused by CO2 discharge, and reduction of the production cost. This research investigates the chloride ion permeability of NSC concrete added PG and WL to GBFS as sulfate and alkali activators. The result of experiment of chloride ion permeability, showed that NSC is very excellent in seawater resistance. Such a reasons are that the hydrate like CSH gel and ettringite formed dense pore structure of NSC matrix.

  • PDF

A Research on the Manufacture of Eco-Friendly Weed-Proof Mortar using Industrial Byproducts (산업부산물(産業副産物)을 혼입(混入)한 친환경성(親環境性) 방초(防草) 모르타르의 제조(製造)에 관(關)한 기초적(基礎的) 연구(硏究))

  • Kim, Nam Wook;Ko, Young Zoo
    • Resources Recycling
    • /
    • v.21 no.6
    • /
    • pp.23-31
    • /
    • 2012
  • Removal work about weeds that grow naturally on road and industrial complex is attaining ordinary times but is suffering difficulty in weeding work by strong self-generation power. In the meantime, going side by side with these manual processing and weeding work through construction of weed-proof seat is attaining, but economic performance, limitation of application region and withdrawal processing problem are being blamed for shortcoming. The scope of this study is about the manufacture of weed-proof mortar using eco-friendly industrial byproducts characterized by an economic and simplicity for not limited to loss of function as a product recovered after treatment. After the carried out the various experiments and actual construction for the selection of mixing materials and derivation of appropriate mix, through the comparison and analysis of results, it was investigated the research results of weed-proof mortar for fundamental development.

Fresh and hardened properties of concrete incorporating ground granulated blast furnace slag-A review

  • Patra, Rakesh Kumar;Mukharjee, Bibhuti Bhusan
    • Advances in concrete construction
    • /
    • v.4 no.4
    • /
    • pp.283-303
    • /
    • 2016
  • Several types of industrial byproducts are generated. With increased environmental awareness and its potential hazardous effects, the utilization of industrial byproducts in concrete has become an attractive alternative to their disposal. One such by-product is ground granulated blast furnace slag (GGBS), which is a byproduct of the smelting process carried out in the iron and steel industry. The GGBS is very effective in the design and development of high-strength and high-performance concrete. This paper reviews the effect of GGBS on the workability, porosity, compressive strength, splitting tensile strength, and flexural strength of concrete.