• Title/Summary/Keyword: Industrial Wastes

Search Result 462, Processing Time 0.03 seconds

Recovery of Polyethylene Telephthalate Monomer over Cu or Mn/γ-Al2O3 Catalysts (Cu, Mn/γ-Al2O3 촉매상에서 polyethylene telephthalate 단량체의 회수 연구)

  • Sim, Jae-Wook;Kim, Seung-Soo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.485-489
    • /
    • 2017
  • Polyethylene terephthalate (PET) has been widely applied in polymers and packaging industries to produce synthetic fibers, films, drink bottles or food containers. Therefore, it has become one of the major plastic wastes. In this article, glycolysis known as one of the main methods in PET chemical recycling was investigated using a glycol to break down the polymer into a monomer. Glycolysis of PET and ethylene glycol was performed in a micro-tubing reactor under various conditions. The effect of glycolysis conditions on the product distribution was investigated at experimental conditions of the EG/PET ratio of 1~4, the reaction time of 15~90 min and the reaction temperature of $250{\sim}325^{\circ}C$ with Mn and Cu catalysts. The highest yield of bis (2-hydroxyethyl) terephthalate monomer (BHET) was obtained as 89.46 wt% under the condition of the reaction temperature of $300^{\circ}C$ and the time of 30 min using 10 wt% $Cu/{\gamma}-Al_2O_3$ catalyst, with the PET and ethylene glycol ratio of 1 : 2.

Introduction of KIER Pyrolysis Process and 3,000 ton/yr Demonstration Plant (KIER의 열분해유화 공정 기술과 실증플랜트 소개)

  • Shin, Dae-Hyun;Jeon, Sang-Gu;Kim, Kwang-Ho;Lee, Kyong-Hwan;Roh, Nam-Sun;Lee, Ki-Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.479-482
    • /
    • 2008
  • Since late of 2000, KIER has developed a novel pyrolysis process for production of fuel oils from polymer wastes. It could have been possible due to large-scale funding of the Resource Recycling R&D Center. The target was to develop an uncatalyzed, continuous and automatic process producing oils that can be used as a fuel for small-scale industrial boilers. The process development has proceeded in three stages bench-scale unit, pilot plant and demonstration plant. As a result, the demonstration plant having capacity of 3,000 tons/year has been constructed and is currently under test operation for optimization of operation conditions. The process consisted of four parts ; feeding system, cracking reactor, refining system and others. Raw materials were pretreated via shredding and classifying to remove minerals, water, etc. There were 3 kind of products, oils(80%), gas(15%), carbonic residue(5%). The main products i.e. oils were gasoline and diesel. The calorific value of gas has been found to be about 18,000kcal/$m^3$ which is similar to petroleum gas and shows that it could be used as a process fuel. Key technologies adopted in the process are 1) Recirculation of feed for rapid melting and enhancement of fluidity for automatic control of system, 2) Tubular reactor specially-designed for heavy heat flux and prevention of coking, 3)Recirculation of heavy fraction for prevention of wax formation, and 4) continuous removal & re-reaction of sludge for high yield of main product (oil) and minimization of residue. The advantages of the process are full automation, continuous operation, no requirement of catalyst, minimization of coking and sludge problems, maximizing the product(fuel oil) yield and purity, low initial investment and operation costs and environment- friendly process. In this presentation, background of pyrolysis technology development, the details of KIER pyrolysis process flow, key technologies and the performances of the process will be discussed in detail.

  • PDF

A Study on the Properties of Rural Solid Wastes (농촌지역 생활쓰레기의 배출특성에 관한 연구)

  • Lee, Nam-Hoon;Chun, Moo-Kab
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.6 no.2
    • /
    • pp.69-79
    • /
    • 1998
  • The purpose of this study is to suggest the design parameters, which are applied to the solid waste treatment and management systems in rural area. In order to drive out the parameters, the solid waste production and management systems in rural and urban areas had been surveyed and analyzed, respectively. The comparisons of the analyzed results are also introduced in the paper. The rural areas referred to the survey are grouped in accordance with the industrial activities in those areas. The conclusions of the study are as follows: 1) The solid waste volumes produced per day per capita in rural area are less than those of urban area. For example, the average volume produced in rural area in 1995 is 0.85kg, which is two thirds of those in Seoul area. 2) for the treatment, the country has depended mainly on landfill. On the other hand, the incineration treatment ratio has been in creasing in rural area. 3) The physical and chemical properties of the rural solid waste, according to the analysis, are similar to those of the urban areas, which means the living pattern in those two areas have a little difference.

  • PDF

Linear Correlation between Online Capacitance and Offline Biomass Measurement up to High Cell Densities in Escherichia coli Fermentations in a Pilot-Scale Pressurized Bioreactor

  • Knabben, Ingo;Regestein, Lars;Schauf, Julia;Steinbusch, Sven;Buchs, Jochen
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.204-211
    • /
    • 2011
  • To yield high concentrations of protein expressed by genetically modified Escherichia coli, it is important that the bacterial strains are cultivated to high cell density in industrial bioprocesses. Since the expressed target protein is mostly accumulated inside the E. coli cells, the cellular product formation can be directly correlated to the bacterial biomass concentration. The typical way to determine this concentration is to sample offline. Such manual sampling, however, wastes time and is not efficient for acquiring direct feedback to control a fedbatch fermentation. An E. coli K12-derived strain was cultivated to high cell density in a pressurized stirred bioreactor on a pilot scale, by detecting biomass concentration online using a capacitance probe. This E. coli strain was grown in pure minimal medium using two carbon sources (glucose and glycerol). By applying exponential feeding profiles corresponding to a constant specific growth rate, the E. coli culture grew under carbon-limited conditions to minimize overflow metabolites. A high linearity was found between capacitance and biomass concentration, whereby up to 85 g/L dry cell weight was measured. To validate the viability of the culture, the oxygen transfer rate (OTR) was determined online, yielding maximum values of 0.69 mol/l/h and 0.98mol/l/h by using glucose and glycerol as carbon sources, respectively. Consequently, online monitoring of biomass using a capacitance probe provides direct and fast information about the viable E. coli biomass generated under aerobic fermentation conditions at elevated headspace pressures.

Current Status and future of Vermicomposting Industry in Korea (지렁이 퇴비화 운영사례 및 개선방향)

  • Kim, Jong-Oh;Lee, Chang-Ho;Choi, Hun-Gun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.4
    • /
    • pp.89-98
    • /
    • 2001
  • Present vermicomposting technology needs the broad land. Because of the high land cost, the land saving technology such as multistage must be needed. And present operation practices are mostly based on human power, mechanization and automation is needed. Also, present control practices based on individual experience need the scientific base control system. Even though the rough estimation of organic waste treatment showed that vermicompostiong could obtain more benefits than costs. But, the estimation is based on an ideal case without considering the technical and market. Generally, vermicomposting is considered as the more expensive technology than composting. Therefore, the practical proof the economic factor would be the most important to the market increase. Vermicomposting as the recycling technology has better condition than incineration and landfill. Propagation and advocating focused on its environmentally sound aspects would be needed continuously. Especially, demonstration and distribution of household vermicomposting would be a good approach. Vermicomposting facilities area was becoming larger, and earthworm feeding materials were also expanding to various organic sludges. These trends showed that vermicomposting is being enlightened to treat and recycle the organic wastes.

  • PDF

Isolation and characterization of bacteria degrading chlorinated aromatic hydrocarbons (염화 방향족 탄화수소 분해세균의 분리 및 특성)

  • 김종우;김치경;김영창;염재홍;이재구
    • Korean Journal of Microbiology
    • /
    • v.25 no.2
    • /
    • pp.122-128
    • /
    • 1987
  • Several bacterial isolates capable of degrading 4-chlorobiphenyl or 2,4,5-trichlorophenoxyacetic acid were isolated from industrial wastes by the agar plate method and studied for their biodegradabilities of the hydrocarbons and some biochemical characteristics. The isolates DJ-12, DJ-26 and TP-1 were identified as Pseudomonas spp. and they could not degrade 2,4-dichlorophenoxyacetic acid. The absorption spectra for 4-chlorobiphenyl and 2,4,5-trichlorophenoxyacetic acid showed the peaks at 253 and 292 nm, respectively. Biodegradability of the isolates was determined by decrease of the absorbance for the test hydrocarbons with a UV-scanning spectrophotometer. The plasmids of the isolates were studied to examine whether or not the hydrocarbon-degrading genes exist in the plasmids. Antibiotics resistance was also examined to search out a proper marker for the isolates in further experiments, such as curing test and genetic recombination.

  • PDF

Physical Properties of Foamed Concrete up In the Manufacturing Waste Expanded Poly-Styrene (폐스티로폼의 가공 형태에 따른 기포콘크리트의 물리적 특성 변화)

  • 오세출;서치호;신상태;지석원;김봉주
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.207-215
    • /
    • 2002
  • This study is focusing on mixing the foamed concrete incorporated by waste expanded polystyrene(W-EPS), investigating the physical properties and offering a proper quality control method to the field engineers. Two types of W-EPS (type A and type B) were studied. Type A (B) had globular (crushed) shape and diameter of 3-5 (1-2) mm. The results show that the flow was suddenly reduced with increasing mixing quantity of two types, but it satisfies KS F 4039 until 60 % of mixing rate. In general, the absorption rate was suddenly reduced with increased mixing quantity of two types especially, in type A. Apparent specific gravity was 0.36∼0.53 and reduced with increasing mixing quantify of type A. But it increased in case of type B. Compressive strength and heat conduction rate increased with mixing with W-EPS than non-mixing W-EPS but reduced with mixing too much W-EPS. Based ong the results, it is believed that mixing with W-EPS can improve the recycle of industrial wastes and produce the high quality foamed concrete.

Assessment of Dynamic Deep Compaction Applied to Waste Landfill (폐기물 매립지반에 대한 동다짐공법 적용평가)

  • Kim, Young Muk;Lee, Sang Yong;Kim, Man Goo;Shin, Seung Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.209-222
    • /
    • 1993
  • This article is a case study of the ground improvement project which was carried out for manmade landfill. The project area is located near to Kapchun, Teajon and composed of the municipal wastes dumped, demolished building debris, coal ash and industrial waste made between 1983 and 1989. The DDC(dynamic deep compaction) based on the results of the test compaction at two representative locations was carried out from March 16, 1992 to Oct. 25, 1992. Field measurements and laboratory tests were carried out for ground improvement assessment and quality control for the DDC(dynamic deep compaction) work. From the results of field measurements and laboratory tests, it was found that the DDC work was successful: waste landfill was compressed considerably (${\fallingdotseq}$ 15% of full depth); and the strength was increased satisfactorily (${\fallingdotseq}$ 100% of original penetration resistance), Also, it is expected that the results of this work could be a guide to the future DDC work with the similar ground conditions, i.e. man-made landfills.

  • PDF

Ecological Stability of the Shihwa Lake Evaluated by Zooplankton Distribution in the Lake Shihwa and Adjacent Coastal Area (시화호와 인근 해역의 동물플랑크톤 분포로 본 시화호의 생태적 안정성)

  • Park, Chul;Huh, Sung-Hoi
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.2 no.2
    • /
    • pp.87-91
    • /
    • 1997
  • Ecological stability of the Lake Shihwa, artificially made by the construction of the Shihwa Dike, was evaluated by the species composition and variation in biomass of zooplankton. Species composition and seasonal variation in biomass in the seaside stations were similar to those observed in nearby bays and coastal zone. However, those in the lake sites showed very different patterns. The brackish water copepod, Sinocaianus tenellus, held the first rank in every season (with more than 66% in spring, 98% in summer and fall, and 80% in winter). The species composition was very simple and the biomass (in terms of total individuals $m^{-3}$) varied markedly with season up to the order of $10^4$ magnitude. These results imply that the lake ecosystem made by the construction of Sihwa dike is in very unstable stage probably due to the input of industrial wastes as well as unpredictable variation in salt content caused by irregular control of the watergate of the dike and resultant irregular flow direction of the water through the gate.

  • PDF

A Study on Combustion Characteristics due to Changes in Solid Refuse Fuel Properties (고형연료제품 성상 변화에 따른 연소특성에 관한 연구)

  • Lim, Jong-Wan;Dong, Jong-In;Yoon, Kyoon-Duck;Shim, Jae-Young
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.686-691
    • /
    • 2015
  • A basic research for utilizing solid refuse fuel (SRF) based on changing SRF properties (RDF, RPF) and types (pellet, fluff) is demonstrated. Physicochemical characteristics of SRF and also changes in thermal decomposition depending on combustion time and emission gas (NOx, CO, HCl, etc) concentration were investigated for applications to waste energy sources. In conclusion, RPF is easy to pelletize, and has better combustion efficiency, higher LHV, higher thermal reduction, and short combustion time because it is composed of plastic wastes homogeneously. Also, fluff type samples have better combustion efficiency, and short combustion time because it has wider exposed surface area for combustion. It can also save energy consumption for pelletizing.