• Title/Summary/Keyword: Industrial Wastes

Search Result 462, Processing Time 0.027 seconds

Strength evaluation of concrete with fly ash and GGBFS as cement replacing materials

  • Chore, H.S.;Joshi, M.P.
    • Advances in concrete construction
    • /
    • v.3 no.3
    • /
    • pp.223-236
    • /
    • 2015
  • Concrete is the most widely used material of construction. Concrete gained the popularity as a construction material due to the easy availability of its component materials, the easy formability, strength and rigidity upon setting and curing.In construction industry, strength is the primary criterion in selecting a concrete for a particular application. Now a days, the substantial amount of waste materials, containing the properties of the Pozzolana, is being generated from the major industries; and disposal of such industrial wastes generated in abundance is also a serious problem from the environmental and pollution point of view. On this backdrop, efforts are made by the researchers for exploring the possible utilization of such waste materials in making the sustainable construction material. The present paper reports the experimental investigations to study the strength characterization of concrete made from the pozzolanic waste materials. For this purpose, the Pozzolanic materials such as fly ash and ground granulated blast furnace slag were used as a cement replacing materials in conjunction with ordinary Portland cement. Equal amount of these materials were used in eight trial mixes with varying amount of cement. The water cement ratio was also varied. The chemical admixture was also added to improve the workability of concrete. The compressive strengths for 7, 28, 40 and 90 days' were evaluated whereas the flexural and tensile strengths corresponding to 7, 28 and 40 days were evaluated. The study corroborates that the pozzolanic materials used in the present investigation along with the cement can render the sustainable concrete.

Radiological Safety Assessment for a Near-Surface Disposal Facility Using RESRAD-ONSITE Code

  • Jang, Jiseon;Kim, Tae-Man;Cho, Chun-Hyung;Lee, Dae Sung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.123-132
    • /
    • 2021
  • Radiological impact analyses were carried out for a near-surface radioactive waste repository at Gyeongju in South Korea. The RESRAD-ONSITE code was applied for the estimation of maximum exposure doses by considering various exposure pathways based on a land area of 2,500 ㎡ with a 0.15 m thick contamination zone. Typical influencing input parameters such as shield depth, shield materials' density, and shield erosion rate were examined for a sensitivity analysis. Then both residential farmer and industrial worker scenarios were used for the estimation of maximum exposure doses depending on exposure duration. The radiation dose evaluation results showed that 60Co, 137Cs, and 63Ni were major contributors to the total exposure dose compared with other radionuclides. Furthermore, the total exposure dose from ingestion (plant, meat, and milk) of the contaminated plants was more significant than those assessed for inhalation, with maximum values of 5.5×10-4 mSv·yr-1 for the plant ingestion. Thus the results of this study can be applied for determining near-surface radioactive waste repository conditions and providing quantitative analysis methods using RESRAD-ONSITE code for the safety assessment of disposing radioactive materials including decommissioning wastes to protect human health and the environment.

Strength properties of concrete with fly ash and silica fume as cement replacing materials for pavement construction

  • Chore, Hemant Sharad;Joshi, Mrunal Prashant
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.419-427
    • /
    • 2021
  • The overuse level of cement for civil industry has several undesirable social and ecological consequences. Substitution of cement with industrial wastes, called by-products, such as fly ash, ground granulated blast furnace slag, silica fume, metakaoline, rice husk ash, etc. as the mineral admixtures offers various advantages such as technical, economical and environmental which are very important in the era of sustainability in construction industry. The paper presents the experimental investigations for assessing the mechanical properties of the concrete made using the Pozzolanic waste materials (supplementary cementitious materials) such as fly ash and silica fume as the cement replacing materials. These materials were used in eight trial mixes with varying amount of ordinary Portland cement. These SCMs were kept in equal proportions in all the eight trial mixes. The chemical admixture (High Range Water Reducing Admixture) was also added to improve the workability of concrete. The compressive strengths for 7, 28, 40 and 90 days curing were evaluated whereas the flexural and tensile strengths corresponding to 7, 28 and 40 days curing were evaluated. The study corroborates that the Pozzolanic materials used in the present investigation as partial replacement for cement can render the sustainable concrete which can be used in the rigid pavement construction.

Recent Advances in the Removal of Radioactive Wastes Containing 58Co and 90Sr from Aqueous Solutions Using Adsorption Technology

  • Alagumalai, Krishnapandi;Ha, Jeong Hyub;Choi, Suk Soon
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.352-366
    • /
    • 2022
  • Nuclear power plant operations for electricity generation, rare-earth mining, nuclear medical research, and nuclear weapons reprocessing considerably increase radioactive waste, necessitating massive efforts to eradicate radioactive waste from aquatic environments. Cobalt (58Co) and strontium (90Sr) radioactive elements have been extensively employed in energy generation, nuclear weapon testing, and the manufacture of healthcare products. The erroneous discharge of these elements as pollutants into the aquatic system, radiation emissions, and long-term disposal is extremely detrimental to humans and aquatic biota. Numerous methods for treating radioactive waste-contaminated water have emerged, among which the adsorption process has been promoted for its efficacy in eliminating radioactive waste from aquatic habitats. The current review discusses the adsorptive removal of radioactive waste from aqueous solutions using low-cost adsorbents, such as graphene oxide, metal-organic frameworks, and inorganic metal oxides, as well as their composites. The chemical modification of adsorbents to increase their removal efficiency is also discussed. Finally, the current state of 58Co and 90Sr removal performances is summarized and the efficiencies of various adsorbents are compared.

Effect of crushed waste glass as partial replacement of natural fine aggregate on performance of high strength cement concrete

  • Ajmal, Paktiawal;Mehtab, Alam
    • Advances in materials Research
    • /
    • v.11 no.4
    • /
    • pp.251-277
    • /
    • 2022
  • Disposal of industrial waste in cities where municipal authorities permitting higher floor area ratio coupled with increasing living standards, a lot of demolition waste is being generated. Its disposal is a challenge particularly in megacities where no landfills are available. The ever-increasing cost of building construction materials also necessitates consuming demolition wastes in a useful manner to save fresh natural raw materials. In the present work, the crushed waste glass is used in high-strength concrete as a partial replacement of fine aggregate. The control concrete of grade M60 was proportioned following BIS 10262-2009. The crushed waste glass has been used as a partial replacement with varying percentages of 10, 20, 30, and 40% by weight of fine aggregate. Experimental tests were carried on the fresh and hardened state of the concrete. The effect of crushed waste glass on the workability of the concrete has been investigated. Non-destructive tests, acid attack tests, compressive strength, split tensile strength, and X-ray diffraction analysis was carried out for the control concrete and concrete containing crushed waste glass after 7, 28, and 270 days of normal curing. The results show that for the same w/c ratio, the workability of concrete increases with increasing replaced crushed waste glass content. However, the decrease in compressive strength of the concrete after 28 days of normal curing and further after 28 days of acid attacks, up to 30% replacement level of fine aggregate by the crushed waste glass is insignificant.

Study on Expression Characteristic of Fashion Bag Products of Up-cycle Brand (업사이클 브랜드 패션가방제품의 표현 특성 연구)

  • Park, Hae-In;Kwak, Tai-Gi
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.19 no.2
    • /
    • pp.1-14
    • /
    • 2017
  • The consumption trend of fashion in modern industrial society is developing from the rapid changes, and the lifespan of fashion products becomes shorter due to the various industrial wastes. Due to the attitude change caused by the ethical consumption consciousness and environment awareness, the up-cycle fashion products got to receive attention, and it is in the limelight as a new trend to realize the sustainable fashion products in the domestic and foreign fashion. The purpose of this study lies in drawing the expression characteristics by investigating and analyzing the cases of each type on the fashion bag products of up-cycle brand, and contributing to the diversification of product family fitting to the characteristics of fashion bag product of up-cycle brand, systematic strategies of up-cycle fashion products, and activation of up-cycle fashion market. In research methods, the theatrical researches were conducted centered the relevant domestic literature materials, preceding papers, etc., which ran paralleled with the actual case analysis study. Through the preceding research and websites related to selected products, websites of up-cycle companies, relevant books, related articles, etc., the expression characteristics of up-cycle fashion bag products were drawn. The results of this study are as follows: First, as it has the feature of historicality, the designs can be created by containing the designer's story, story of materials, and consumer's story. Second, since it has the characteristic of sustainability, the application of manufacturing process and materials, extension of product life, conversion of original material's function, etc. can be sustainable. Third, as it's a trait of scarcity, all products may be produced by hand, and it can have the specialty which the original materials have. Fourth, since it has an eco-friendly trait, even while saving the original materials, the aesthetic needs could be met according to the consumers' continuous demand.

  • PDF

Analytical method for combustible waste contaminated by the HF leakage from industrial process (산업공정에서 불산누출로 오염된 가연성 폐기물의 분석방법 연구)

  • Kang, Young-Yeul;Kim, Yong-Jun;Kim, Woo-Il;Yoon, Cheol-Woo;Yeon, Jin-Mo;Shin, Sun-Kyoung;Oh, Gil-Jong
    • Analytical Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.167-171
    • /
    • 2014
  • Hydrofluoric acid (HF), a typical inorganic acid, has been used in the industry for its various usage and classified as the toxic compound, because it can cause the pneumonia and pulmonary edema when it was exposed to respiratory organs. The official environmental analytical method for fluorine and its compound in waste has not been developed. For this reason, we have faced some problem to treat the contaminated wastes by the HF leakage from industrial process. In this study, prepared for analytical method for combustible waste (crop, trees, etc.) generated from HF leaking accident and to be applied as the official analytical method for fluorine contaminated waste when the fluorine and its compound will be regulated as a hazardous material by the waste management law later.

Cocoon Yield Pattern and Analysis of Water, Soil and Leaves from Mulberry Gardens Irrigated with Polluted Water Around Bangalore, India

  • Chandrakala, M.V.;Maribashetty, V.G.;Aftab Ahamed, C.A.;Jyothi, H.K.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.18 no.2
    • /
    • pp.97-103
    • /
    • 2009
  • Sericulturists in the vicinity of Bangalore city irrigate their mulberry gardens with Vrishabhavathy stream water, which is polluted with domestic and industrial wastes from the city. To investigate the effect of pollutants on silkworm crops, a detailed field survey was conducted to study the cocoon yield pattern of the crops raised on mulberry irrigated with wastewater as against irrigation by bore/open wells. The villages along the stream were grouped into five test batches at about a distance of $5{\sim}8$ km from each other. The seasonal yield data with relevant information were collected through questionnaires from 117 rearers using stream water and 35 rearers using bore/open wells, the latter serving as control group. The average yield for 100 layings was 46 to 57 kg in the control group whereas in test groups, it ranged between 34 to 51 kg in the first test group and 22 to 38 kg in the rest. The difference in yield was $9{\sim}19$ kg depending on the season between control and test batches. In summer, this difference was higher, with high co-efficient of variation in test groups ($33{\sim}52$%). Further, water, soil and leaf samples were collected from selected rearers and were analyzed for zinc, copper, iron, lead and nickel. Results indicated significantly higher contents of these metals in samples from gardens using wastewater when compared control samples. Significantly (p<0.05 & p<0.01)) higher levels of zinc ($24{\sim}122$ ppm) and iron ($208{\sim}683$ ppm) were noticed in mulberry leaves during summer followed by winter and rainy season. The significance of high content of heavy metals in mulberry leaves and cocoon yield pattern of this area in relation to the quality of irrigation water is discussed.

A Study on Standardization on the Flight Controller Mode in Remotely Piloted Aircraft Drone : Focused on Drone Controller Mode Preference (원격조종항공기 드론 조종기모드 표준화 연구 : 드론 조종기모드 선호도를 중심으로)

  • Park, Wontae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.4
    • /
    • pp.69-75
    • /
    • 2019
  • Remotely Piloted Aircraft (RPA) controls as a type of unmanned aerial vehicle (drone) is growing rapidly and its flight controller stick disposition is required standardization. We should standardize RPA drone flight control disposition because the flight pilot of RPA is hard to be trained so the flight controller stick differences impairs safety and wastes time and effort of flight controller industry. So this study researches the on-going standardization of RPA drone flight control disposition in Korea and foreign countries. Also this paper analyzes and researches of expert about RPA drone flight controller function and application of flight control mode. I accomplished expert research about standardization plan of unmanned flight control mode and confirm the necessity. Nowadays mode1 and 2 are mostly used in Korea so I carried out preference investigation for two modes. There were 4 preferences choices of RPA drone control mode necessity (importance) and recommendation of standardization modes. They answered that necessity of standardization is important considering pilot training, flight safety and positive development of drone industry. The result of standardization mode preference is that they prefer mode 2 (drone maker 86%, training facilities and research facilities 58%, government bureau 60%). Overall preference result shows that mode 1 24%, mode 1&2 16%, mode 2 60%. So they preferred mode 2 by 60%. The differences between two modes are the direction of throttle and pitch. Direction of throttle and pitch operate opposite way. They prefer mode 2 because mode 2 has similarities of manned flight control mode. Significance of this study is that it showed the necessity of standardization and flight control preference in a quantitative way. It will help drone standardization in related industries and development direction near future.

A Study on the Method to Improve Manufacturing Process Using Motion Analysis Solution (동작분석 솔루션을 활용한 제조공정개선 방법연구)

  • Kim, Hyun-Jong;Yoo, Jae-Gun;Hong, Jung-Wan
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.6
    • /
    • pp.69-75
    • /
    • 2018
  • Efficiency of Process in manufacturing industry is a critical factor to connect directly to competitiveness of product. In particular, due to FTAs with various worlds around the world, the domestic and overseas manufacturing industries are facing intense competitions, and it requires elaborate task management system for shortening production time. This study aims at seeking how to raise efficiency of manufacturing process, using motion analysis solution. When improving the process of manufacturing after verifying optimization using motion analysis solution, it can save costs for additional process, modification, or supplement. It can also deduce practical effect to improve productivity of companies. It is expected that the study will contribute to improve wastes in the work field and task assignment efficiency, to shorten time replacing equipment, to measure standard time, and to standardize task system.