• Title/Summary/Keyword: Industrial Energy Usage

Search Result 123, Processing Time 0.033 seconds

The Quality Properties of Quaternary Component Blended High Fluidity Concrete Using Industrial By-products for Carbon Neutrality (탄소중립을 위한 산업부산물 활용 4성분계 고유동 콘크리트의 품질특성)

  • Yong-Jic, Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.506-513
    • /
    • 2022
  • In this paper, as part of a study for carbon neutrality, the quality properties of quaternary component high-fluidity concrete, which significantly replaced up to 80 % of the cement usage by using three industrial by-products, were evaluated. As a result of the evaluation, even if a large amount of industrial by-products were replaced by more than 80 % of the amount of cement used, it was possible to obtain quality that satisfies the target performance in all concrete mix. In the case of flow properties, mechanical properties, and durability, compared to the existing standard concrete mix, the performance tends to decrease, but it is judged that the performance above the required performance level can be satisfied. When considered comprehensively, the quaternary component High-Fluidity Concrete with a large mixing amount of fine powder of blast furnace slag showed relatively good performance.

Finding Industries for Big Data Usage on the Basis of AHP (AHP 기반의 빅데이터 활용을 위한 산업 탐색)

  • Lee, Sang-Won;Kim, Sung-Hyun
    • Journal of Digital Convergence
    • /
    • v.14 no.7
    • /
    • pp.21-27
    • /
    • 2016
  • Big Data is gathering all the attention from every business community. Pervasive use of machine-to-machine (M2M) applications and mobile devices bring an explosion of data. By analyzing this data, the private and public sectors can benefit in the areas of cost reduction and productivity. The Korean government is actively pursuing Big Data initiatives to promote its usage. This paper aims to select industries which fit for the development of Big Data with a verification of the experts. The analytic hierarchy process (AHP) is applied to systematically derive the opinion of more than 50 professionals. Medical / welfare, transportation / warehousing, information and communications / information security, energy, the financial sector have been identified as promising industries. The results can be utilized in developing Big Data best practices thus contributing industrial development.

Applicability of Various Biomasses to Pulverized Coal Power Plants in Terms of their Grindability (다양한 바이오매스의 분쇄도 실험을 통한 미분탄 화력발전 적용가능성 연구)

  • Kang, Byeol;Lee, Yongwoon;Ryu, Changkook;Yang, Won
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.73-79
    • /
    • 2017
  • Recently usage of biomass is increased in pulverized coal power plants for reduction of $CO_2$ emission. Many problems arise when thermal share of the biomass is increased, and milling of the biomasses is one of the most important problems due to their low grindability when existing coal pulverizer is used. Grindability of coal can be measured through the HGI (Hardgrove grindability index) equipment as a standard, but method of measuring biomass grindability has not been established yet. In this study, grinding experiment of coal and biomass was performed using a lab-scale ball mill. One type of coal (Adaro coal) and six biomasses (wood pellet (WP), empty fruit bunch (EFB), palm kernel shell (PKS), walnut shell (WS), torrefied wood chip (TBC) and torrefied wood pellet (TWP)) were used in the experiment. Particle size distributions of the fuels were measured after being milled in various pulverization times. Pulverization characteristics were evaluated by portion of particles under the diameter of $75{\mu}m$. As a result, about 70% of the TBC and TWP were observed to be pulverized to sizes of under $75{\mu}m$, which implies that they can be used as alternative biomass fuels without modification of the existing mill. Other biomass was observed to have low grindability compared with torrefied biomass. Power consumption of the mill for various fuels was measured as well, and the results show that lower power was consumed for torrefied biomasses. This result can be used for characterization of biomass as an alternative fuel for pulverized coal power plants.

Development Status and Research Direction in the Mineral Carbonation Technology Using Steel Slag (제철 슬래그를 이용한 광물 탄산화 기술의 개발 현황과 연구 방향)

  • Son, Minah;Kim, Gookhee;Han, Kunwoo;Lee, Min Woo;Lim, Jun Taek
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.141-155
    • /
    • 2017
  • In the present paper, we investigated the development status of precipitated calcium carbonate (PCC) production using steel slag, which is one of mineral carbonation (MC) technologies, from the standpoint of $CO_2$ utilization. Principle, feature, and global and domestic development status of the mineral carbonation technology were discussed together with the overview of the production method and market of PCC. Mineral carbonation is known as stable and environmentally-friendly technology enabling economical treatment of industrials wastes. Typically, PCC is produced by the reaction of $CO_2$ with supernatant solution after Ca extraction from steel slag followed by the separation of solid and liquid. The development status of MC using steel slag is at the pilot stage (Slag2PCC at Aalto University), and there remains the process economics improvement for commercialization. Key technologies for the further development are efficient extraction of Ca ions from steel slag including impurities removal, valorization of PCC via shape and size control, usage development and value-addition of residual slag, and optimization of reaction conditions for continuous process setup, etc.

Self-organization Scheme of WSNs with Mobile Sensors and Mobile Multiple Sinks for Big Data Computing

  • Shin, Ahreum;Ryoo, Intae;Kim, Seokhoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.943-961
    • /
    • 2020
  • With the advent of IoT technology and Big Data computing, the importance of WSNs (Wireless Sensor Networks) has been on the rise. For energy-efficient and collection-efficient delivery of any sensed data, lots of novel wireless medium access control (MAC) protocols have been proposed and these MAC schemes are the basis of many IoT systems that leads the upcoming fourth industrial revolution. WSNs play a very important role in collecting Big Data from various IoT sensors. Also, due to the limited amount of battery driving the sensors, energy-saving MAC technologies have been recently studied. In addition, as new IoT technologies for Big Data computing emerge to meet different needs, both sensors and sinks need to be mobile. To guarantee stability of WSNs with dynamic topologies as well as frequent physical changes, the existing MAC schemes must be tuned for better adapting to the new WSN environment which includes energy-efficiency and collection-efficiency of sensors, coverage of WSNs and data collecting methods of sinks. To address these issues, in this paper, a self-organization scheme for mobile sensor networks with mobile multiple sinks has been proposed and verified to adapt both mobile sensors and multiple sinks to 3-dimensional group management MAC protocol. Performance evaluations show that the proposed scheme outperforms the previous schemes in terms of the various usage cases. Therefore, the proposed self-organization scheme might be adaptable for various computing and networking environments with big data.

The Product properties of Bituminous Coal in Two-Stage Pyrolysis (유연탄의 이단 열분해에 따른 생성물의 특성)

  • 송광섭;이상남;윤형기;김상돈
    • Journal of Energy Engineering
    • /
    • v.2 no.2
    • /
    • pp.208-214
    • /
    • 1993
  • Pyrolysis of bituminous coal has been carried out in a two-stage fixed bed reactor to produce high heating value gas(7000 kcal/N㎥) for industrial or town gas usage. The effects of coke catalyst, pyrolysis temperature (468∼565$^{\circ}C$), and catalytic cracking temperature (700∼850$^{\circ}C$) on the product gas properties from pyrolysis of bituminous coal have been determined. From pyrolysis of Dong Jin coal with coke, the carbon deposition on catalyst is found to be less than 5% of product tar and approximately 15% of total energy iii the parent coal can be recovered as high heating value gas. Oil composition in the product tar from the two-stage pyrolysis is higher than that from low-temperature pyrolysis. The tar produced from pyrolysis below 516$^{\circ}C$ can be easily catalytically cracked but, the tar produced above 565$^{\circ}C$ cannot be cracked easily with catalyst. From the product gas analysis, the catalytic cracking temperature should be maintained below 800$^{\circ}C$ since cracking speed of ethylene increases remarkably with the cracking temperature above 800$^{\circ}C$.

  • PDF

Investigation of the Influence of Radius and Corner Position on the Residual Stress Distribution in the Vicinity of the Repaired Region via Directed Energy Deposition by using Finite Element Analysis (유한 요소 해석을 이용한 DED 공정의 코너 반경 및 위치에 따른 보수 영역 부근 잔류응력 분포 영향성 조사)

  • Alissultan, Aliyev;Lee, Kwang-Kyu;Ahn, Dong-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.33-40
    • /
    • 2021
  • Current industrial flow is directed toward reducing the usage of raw materials by reusing parts, which is referred to as a circular economy (CE). Repair is one of the most value-added approaches in CE, which can be efficiently accomplished via additive manufacturing. The repair technology of metallic parts via the directed energy deposition process, which includes the selective removal and redeposition of damaged regions of metallic parts. Residual stress characteristics depend on the shape of the part and the shape of the redeposition region. The objective of this study is to investigate the effects of the radius and corner position of the substrate on the residual stresses for repair by using finite element analysis (FEA). The residual stress distribution of the 45° angle groove at the edge of the circular shape models on the outer and inner radii was analytically investigated. The analysis was accomplished using SYSWELD software by applying a moving heat source with defined material properties and cooling conditions integrated into the FEA model. The results showed a similar pattern of concentrated stress distribution for all models except the 40-mm and 60-mm radii, for which the maximum stress locations were different. The maximum residual stresses are high but lower than the yield strength, suggesting the absence of cracks and fractures due to residual stresses.

Theoretical Heat Flow Analysis and Vibration Characteristics During Transportation of PCS(Power Conversion System) for Reliability (전력변환장치 캐비넷에서의 내부발열 개선을 위한 열유동 분석 및 유통안전성 향상을 위한 진동특성 분석)

  • Joo, Minjung;Suh, Sang Uk;Oh, Jae Young;Jung, Hyun-Mo;Park, Jong-Min
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.2
    • /
    • pp.143-149
    • /
    • 2022
  • PCS needs to freely switch AC and DC to connect the battery, external AC loads and renewable energy in both directions for energy efficiency. Whenever converting happens, power loss inevitably occurs. Minimization of the power loss to save electricity and convert it for usage is a very critical function in PCS. PCS plays an important role in the ESS(Energy Storage System) but the importance of stabilizing semiconductors on PCB(Printed Circuit Board) should be empathized with a risk of failure such as a fire explosion. In this study, the temperature variation inside PCS was reviewed by cooling fan on top of PCS, and the vibration characteristics of PCS were analyzed during truck transportation for reliability of the product. In most cases, a cooling fan is mounted to control the inner temperature at the upper part of the PCS and components generating the heat placed on the internal aluminum cooling plate to apply the primary cooling and the secondary cooling system with inlet fans for the external air. Results of CFD showed slightly lack of circulating capacity but simulated temperatures were durable for components. The resonance points of PCS were various due to the complexity of components. Although they were less than 40 Hz which mostly occurs breakage, it was analyzed that the vibration displacement in the resonance frequency band was very insufficient. As a result of random-vibration simulation, the lower part was analyzed as the stress-concentrated point but no breakage was shown. The steel sheet could be stable for now, but for long-term domestic transportation, structural coupling may occur due to accumulation of fatigue strength. After the test completed, output voltage of the product had lost so that extra packaging such as bubble wrap should be considered.

Development of Sub-indicator for Enhancing the Reliability of National-level Resource Productivity Estimation (국가 단위 자원생산성 측정 신뢰성 제고를 위한 보조지표 개발)

  • Lee, Jong-Hyo;Kang, Hong-Yoon;Hwang, Yong-Woo;Kwon, Soon-Gil
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.258-266
    • /
    • 2022
  • Resource productivity (GDP/DMC) is defined as GDP divided by DMC. However, it has shortcomings when estimating the value-added generated from material processing. In this paper, an energy coefficient is applied to GDP to develop a sub-indicator (referred to as GDPe/DMC). Consequently, South Korea, which is a secondary industry-oriented country, created 1,094.60 USD/ton from input materials and was ranked 4th on the OECD list, which is 10 levels higher than the level estimated by GDP/DMC. However, Luxembourg, which is a tertiary industry-oriented country, is ranked 16th on the OECD list, which is 12 levels lower than the level estimated by GDP/DMC. The resource productivity estimated by the sub-indicator (GDPe/DMC) developed in this study indicates that secondary industry-oriented countries are undervalued in the existing main GDP/DMC calculation. On the other hand, tertiary industry-oriented countries are downgraded due to the industrial features of the GDPe/DMC calculation. As a result of this paper, GDPe/DMC could be considered a more reasonable indicator to directly reflect the material input effect compared to the existing main indicator, GDP/DMC. This means that GDPe/DMC-induced resource productivities could be estimated to be slightly higher than the GDP/DMC-induced resource productivities for secondary industry-oriented countries. It is expected that the sub-indicator, GDPe/DMC, proposed in this study could be useful especially for comparing and analyzing the resource productivities between countries that have different industry structures. This study intended to consider a structurally energy/resource-intensive industry in estimating and analyzing national-level resource productivity. Thus, the sub-indicator, GDPe/DMC, may help minimize the distortion of interpreting national resource productivities in various situations, and be utilized as a more efficient tool when used together with GDP/DMC.

Up-cycling Product Development for Daily Household Supplies Utilizing Used Jeans (폐기된 청바지를 활용한 생활용품 디자인 연구)

  • Ahn, In-Sook;Kim, Ho-Kyung
    • Journal of the Korean Society of Costume
    • /
    • v.65 no.1
    • /
    • pp.76-88
    • /
    • 2015
  • Excessive spending and the ever-changing fashion trends lead to an increase in material production to meet consumers' needs, which also in turn, increase the amount of industrial waste and many harmful pollutants. To address this problem, this study aimed to utilize discarded jeans' parts, reconstructing them into edgy and functional designs for everyday products. Six pairs of discarded jeans were collected and were used to create six types of functional products -three types of baskets, a bag, a slipper, and a key-holder. The benefits of up-cycling outweigh recycling because it not only increases the recycling rate, but also decreases the amount of energy and cost, thereby increasing the efficiency in recreating new innovative products. These proposed up-cycling ideas will serve as a great alternative for consumers to actively participate in reducing carbon emission, water usage, and waste to landfill by utilizing used clothing. This will guide how consumers can extend the life of their used clothing, utilize recyclable items more thoroughly, and keep used clothing out of landfills.