• Title/Summary/Keyword: Industrial Design Engineering

Search Result 5,528, Processing Time 0.048 seconds

A Study on Subsidence of Soft Ground Using Artificial Neural Network (인공신경망을 이용한 DCM 처리된 연약지반 침하에 대한 연구)

  • Kang, Yoon-Kyung;Jang, Won-Yil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.914-921
    • /
    • 2010
  • When industrial structures are constructed on soft ground, ground subsidence is occurred by problems of bearing capacity. To protect ground subsidence have to improve soft ground, and have to predict settlement estimation for reasonable construction. Artificial Neural Networks(ANN) is adopted for prediction of settlement of construction during the initial design. In the study, Artificial Neural Networks are applied to predict the settlement estimation of initial condition ground and ground improved by D.C.M method. Also, this study compares results of Artificial Neural Networks and results of continuum analysis using Mohr-Coulomb models. In result, settlements of initial condition ground decreased over 0.7 times. Also, by comparing ANN and continuum analysis, coefficient of determination was comparatively high value 0.79. Thought this study, it was confirmed that settlements of improvement ground is predicted using laboratory experiment data.

Design and Construction of a Loom for Obtaining Ultra-Light Metal Structure (초경량 금속 구조재 직조장치의 설계 및 제작)

  • Kim, Pan-Su;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1235-1240
    • /
    • 2010
  • Wire-woven Bulk Kagome (WBK) is fabricated by assembling helically formed wires in six directions. To date, WBK samples have been assembled manually. For industrial application, the assembly process must be automated. Furthermore, if WBK is to be fabricated using flexible wires that cannot maintain their helical shape during fabrication, a specialized automatic machine, i.e., a loom needs to be developed. In this work, we designed and constructed a loom for fabricating WBKs using flexible wires. This loom is operated by one rotation of the upper plate, two translations of the insertion device, and insertion of wires. So-called "comb devices" are placed between multiple layers of Kagome nets to prevent the wires that are already in place from getting entangled with those that are being inserted. This loom can be also used to fabricate semi-WBKs composed of helically formed wires and rigid straight wires.

Developing Aged-Housing Remodeling Technology for Improving Structural and Equipment Performance;Introduction of Center for Aged-housing Remodeling Technology (노후 공동주택 구조 및 설비성능개선 기술 개발;연구단 소개)

  • Han, Ju-Yeoun;Cha, Hee-Sung
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.233-239
    • /
    • 2006
  • As the number of aged-housing has been rapidly increased, many kinds of defects and problems such as degeneration of housing environment, structural performance, and equipment performance have been appeared. The reconstruction as the way to improve the aged-housing has been used mostly because the legal process of the reconstruction is relatively easy. On the other hand, it has caused problems such as the lack of natural aggregate, the environmental damages owing to construction wastes, the loss of national resources, and the lack of the housing for rent nearby the reconstruction area. This problems limit active tying into the reconstruction business at present in the industrial and political perspective. In this context, it is required to revitalize the remodeling rather than the reconstruction. In order to reach this objective, this research aims at identifying the user-oriented performance for the housing industry and developing the new technologies. It is expected that the result of this research can contribute to more revitalize the remodeling as tying researches in terms of design, structure, equipment, and construction.

  • PDF

A Practical Study on Code Static Analysis through Open Source based Tool Chains (Open Source 기반 툴 체인화를 통한 코드 정적 분석 연구)

  • Kang, Geon-Hee;Kim, R. Young Chul;Yi, Geun Sang;Kim, Young Soo;Park, Yong. B.;Son, Hyun Seung
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.2
    • /
    • pp.148-153
    • /
    • 2015
  • In our domestic software industries, it is focused on such a high quality development/ testing process, maturity measurement, and so on. But the real industrial fields are still working on a code-centric development. Most of the existing legacy systems did not keep the design and highly increased the code complexity with more patching of the original codes. To solve this problem, we adopt a code visualization technique which is important to reduce the code complexity among modules. To do this, we suggest a tool chaining method based on the existing open source software tools, which extends NIPA's Software Visualization techniques applied to procedural languages. In addition, it should be refactored to fix bad couplings of the quality measurement indicators within the code visualization. As a result, we can apply reverse engineering to the legacy code, that is, from programming via model to architecture, and then make high quality software with this approach.

Comparison of Aerodynamic Loads for Horizontal Axis Wind Turbine (I): with and without Turbulent Inflow (수평축 풍력터빈의 공력 하중 비교 (I): 난류 유입 유·무)

  • Kim, Jin;Kang, Seung-Hee;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.391-398
    • /
    • 2016
  • This study focused on the aerodynamic loads of the horizontal axis wind turbine blade due to the normal turbulence inflow condition. Normal turbulence model (NTM) includes the variations of wind speed and direction, and it is characterized by turbulence intensity and standard deviation of flow fluctuation. IEC61400-1 recommends the fatigue analysis for the NTM and the normal wind profile (NWP) conditions. The aerodynamic loads are obtained at the blade hub and the low speed drive shaft for MW class horizontal axis wind turbine which is designed by using aerodynamically optimized procedure. The 6-components of aerodynamic loads are investigated between numerical results and load components analysis. From the calculated results the maximum amplitudes of oscillated thrust and torque for LSS with turbulent inflow condition are about 5~8 times larger than those with no turbulent inflow condition. It turns out that the aerodynamic load analysis with normal turbulence model is essential for structural design of the wind turbine blade.

Development of Capacity Models Based on the Travel Characteristics at Roundabout (회전교차로의 통행특성에 근거한 용량 모형 개발)

  • Kim, Tae Young;Beak, Tae Hun;Park, Byung Ho
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.6
    • /
    • pp.651-661
    • /
    • 2014
  • Recently, many studies have been undertaken regarding the of introduction at roundabout in Korea. The studies related to roundabout capacity, however, is insufficient. Thus, the goal of this study is to develop a capacity model based on real data. The main results are as follows. First, roundabout capacity in Korea was analyzed using HCM capacity model based on critical gap and following time estimated by Probit model. Entry capacity in Korea was evaluated to be similar to that of the U.S in the case of low circulating flow($Q_c$), but higher in the case of high circulating flow($Q_c$). Second, the basic capacity models in Korea were newly developed based on real traffic data. Third, models that consider geometric structure were developed based on the basic models. Finally, all of the developed models mentioned above were analyzed to be statistically significant.

A Study on filament Winding Process of A CNG Composite Pressure Vessel (필라멘트 와인딩 압력용기의 최적설계와 CNG자동차 연료 충진용기 개발)

  • Kim, Eui-Soo;Kim, Ji-Hoon;Park, Yoon-So;Kim, Chul;Choi, Jae-Chan
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.933-937
    • /
    • 2002
  • The fiber reinforced composite material is widely used in the multi-industrial field where the weight reduction of the infrastructure is demanded because of their high specific modulus and specific strength. Pressure vessels using this composite material in comparison with conventional metal vessels can be applied in the field where lightweight and the high pressure are demanded from the defense and aerospace industry to rocket motor case due to the merits which are energy cutdown the weight reduction and decrease of explosive damage preceding to the sudden explosion which is generated by the pressure leakage condition). In this paper, for nonlinear finite element analysis of E-glass/epoxy filament winding composite pressure vessel receiving an internal pressure, the standard interpretation model is developed by using the ANSYS, general commercial software, which is verified as the accuracy and useful characteristic of the solution based on Auto LISP and ANSYS APDL. Both the preprocessor for doing exclusive analysis of filament winding composite pressure vessel and postprocessor that simplifies result of analysis have been developed to help the design engineers.

  • PDF

Characteristics of CW Nd:YAG Laser Lap Welds of Nickel Coated S45C Steel (니켈도금된 S45C강의 연속파형 Nd:YAG 레이저 겹치기용접 특성)

  • Yoo, Young-Tae;Shin, Ho-Jun
    • Journal of Welding and Joining
    • /
    • v.25 no.3
    • /
    • pp.18-27
    • /
    • 2007
  • Laser welding process is widely used in the industrial field due to its numerous advantages: a small heat affected zone(HAZ), deep penetration, high welding speed, ease of automation, single-pass thick section capability, enhanced design flexibility, and small distortion after welding. The objective of this research works is to investigate the influence of the process parameters, such as the welding fur metals with CW Nd:YAG lasers. The bead-on-plate and Lap welding experiments are carried out for several combinations of the experimental conditions. In order to quantitatively examine the characteristics of the welding quality of the cross section, tensile stress behavior and the hardness of the welded part are investigated in comparison of the Nickel coated and Nickel uncoated S45C steel. As a result of experiment, nickel coated S45C Steel showed more even weld zone than Nickel uncoated counterpart upon lap welding. Also, it showed relatively small amount of internal defects and spatter, and Nickel coated S45C showed better weldability than Nickel uncoated S45C steel. The optimum welding process upon lap welding of Nickel coated S45C steel is when each laser power is 1900W; focal positions is -1mm; welding speed is $0.9{\sim}1.0m/min$. The heat input was $4.178{\sim}4.36{\times}103J/cm^2$.

Production of Biodiesel from Waste Frying Oil by Transesterification on Zeolite Catalysts with Different Acidity (산성도가 다른 제올라이트 촉매에서 전이에스터화 반응에 의한 폐식용유로부터 바이오디젤 제조)

  • Koh, Tae-Suck;Chung, Kyong-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.214-221
    • /
    • 2008
  • The production of biodiesel by transesterification of waste frying oil was conducted on various zeolite catalysts with different acidity and pore structure. $H^+$ ion exchanged MOR, MFI, FAU, and BEA zeolites were employed in the reaction with silicalite which has no strong acid sites. $H^+$ ion exchanged MOR(10) zeolite, which has more acid sites and stronger acid strength than other zeolites, exhibited the highest methyl esters yield as 95%. Dealumination to the HMOR zeolite induced decreasing of acid amount and acid strength. It brought about the decrease of fatty acid methyl esters (FAME) yield. The yield increased linearly with enhancing of acid strength and increasing of amount of strong acid sites. The yields were independent on pore structure of the zeolites.

Conversion Efficiency of Dye-sensitized Solar Cells Using Multi-layered $TiO_2$ Electrodes (다층구조의 $TiO_2$ 전극을 이용한 염료감응형 태양전지의 변환효율)

  • Byun, Hong-Bock;Yun, Tae-Kwan;Bae, Jae-Young
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.291-294
    • /
    • 2010
  • Recently, the design of the multi-layered $TiO_2$ electrodes has been attracted for high efficiency of dye-sensitized solar cells. In this study, conversion efficiency of the multi-layered $TiO_2$ electrodes was investigated by using small and large $TiO_2$ nanoparticles. Nanostructured $TiO_2$ powders were prepared by $TiCl_4$ hydrolysis. Differently sized $TiO_2$ powders of which the average diameter was 7.6 and 18 nm were obtained by controlled calcination temperature. It was confirmed that multi-layered $TiO_2$ electrodes significantly influence short-circuit current (Jsc) and also show higher conversion efficiency than dye-sensitized solar cells consisting of each particles.