• Title/Summary/Keyword: Industrial Design Engineering

Search Result 5,528, Processing Time 0.044 seconds

PRINCIPAL COMPONENTS BASED SUPPORT VECTOR REGRESSION MODEL FOR ON-LINE INSTRUMENT CALIBRATION MONITORING IN NPPS

  • Seo, In-Yong;Ha, Bok-Nam;Lee, Sung-Woo;Shin, Chang-Hoon;Kim, Seong-Jun
    • Nuclear Engineering and Technology
    • /
    • v.42 no.2
    • /
    • pp.219-230
    • /
    • 2010
  • In nuclear power plants (NPPs), periodic sensor calibrations are required to assure that sensors are operating correctly. By checking the sensor's operating status at every fuel outage, faulty sensors may remain undetected for periods of up to 24 months. Moreover, typically, only a few faulty sensors are found to be calibrated. For the safe operation of NPP and the reduction of unnecessary calibration, on-line instrument calibration monitoring is needed. In this study, principal component-based auto-associative support vector regression (PCSVR) using response surface methodology (RSM) is proposed for the sensor signal validation of NPPs. This paper describes the design of a PCSVR-based sensor validation system for a power generation system. RSM is employed to determine the optimal values of SVR hyperparameters and is compared to the genetic algorithm (GA). The proposed PCSVR model is confirmed with the actual plant data of Kori Nuclear Power Plant Unit 3 and is compared with the Auto-Associative support vector regression (AASVR) and the auto-associative neural network (AANN) model. The auto-sensitivity of AASVR is improved by around six times by using a PCA, resulting in good detection of sensor drift. Compared to AANN, accuracy and cross-sensitivity are better while the auto-sensitivity is almost the same. Meanwhile, the proposed RSM for the optimization of the PCSVR algorithm performs even better in terms of accuracy, auto-sensitivity, and averaged maximum error, except in averaged RMS error, and this method is much more time efficient compared to the conventional GA method.

WELDING-INDUCED BUCKLING INSTABILITIES IN THIN PLATES

  • Han, Myoung-Soo;Tsai, Chon-Liang
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.661-667
    • /
    • 2002
  • Welding-induced buckling distortion is one of the most problematic concerns in both design and fabrication of welded thin-plate structures. This paper deals with experimental and numerical results of the welding-induced longitudinal and/or buckling distortion occurring in welding of 6mm-thick AH36 high strength steel plates. Effects of the heat input and the plate size on the distortion were experimentally evaluated for square plates. Bead-on-plate welding was performed with the submerged arc welding process along the middle line of plate specimens. Experimental results showed that the longitudinal distortion made a single curvature in the plate, and the distortion magnitude along the weld centerline was proportional to the heat input and the plate size. The experimental results were used to examine the validity of the numerical simulation procedure for welding-induced distortion where the longitudinal distortion mode and magnitude were numerically quantified. Three-dimensional, large deformation, welding simulations were performed for selected weld models. Numerical results of the distortion mode and magnitude were in a good agreement with experimental ones. Depending on the presence of halting the distortion growth during the cooling cycle of welding, the condition discriminating buckling distortion from longitudinal distortion was established. Eigenvalue analyses were performed to check the buckling instability of tested plates with different sizes subjected to different heat inputs. The perturbation load pattern for the analysis was extracted from longitudinal inherent strain distributions. Critical buckling curve from the eigenvalue analyses revealed that the buckling instability is manifested when plate size or heat input increases.

  • PDF

Load Transfer Mechanism of Drilled Shafts in Weathered Rock (풍화된 암반에 근입된 현장타설말뚝의 하중전이 기구)

  • Kwon, Oh-Sung;Cho, Sung-Min;Jung, Sung-Jun;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.57-64
    • /
    • 2005
  • Since the allowable bearing capacities of piles in weathered/fractured rock are mainly governed by settlement, the load-displacement behavior of the rock socketed pile should be well known. To predict pile head settlement at the design stage, the exact understanding of the load-transfer mechanisms is essential. Therefore, in this research, the load-transfer mechanisms of drilled shaft socketed into weathered rock was investigated. For that, 5 cast-in-place concrete piles with diameters of 1,000 mm were socketed into weathered gneiss. The static axial load tests and the load-transfer measurements were performed to examine the axial resistant behavior of the piles. A comprehensive field/laboratory testing program on weathered rock at the field test sites was also performed to describe the in situ rock mass conditions quantitatively. And then, the effect of rock mass condition on the load transfer mechanism was investigated. The side shear resistance of the pile in moderately weathered rock reached to yielding point at a few millimeter displacements, and after that, the rate of resistance increment dramatically decreased. However, that in the highly /completely weathered rock did not show the obvious yielding point, and gradually increased showing the hyperbolic pattern until with the relatively high displacement (>10 mm). The end bearing-displacement curves showed linear increase at least until with the base displacement of approximately 10 mm, regardless rock mass conditions.

  • PDF

Evaluation of CM Capability based on Business Functions for International Plant Construction (해외 플랜트 건설사업관리 업무기능별 역량분석)

  • Ha, Jiwon;Jung, Youngsoo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.6
    • /
    • pp.3-15
    • /
    • 2014
  • Ever expanding overseas construction is one of the most important issues for Korean construction companies. Among these issues, strategies for overseas plant construction have widely been discussed, because the plant construction has features of low competitiveness and high ripple effects when compared with other construction sectors. In this sense, the purpose of this research is to evaluate the CM capability of Korean construction industry for overseas plant construction. Fourteen construction business functions and four techniques were defined first. Based on these functions and techniques, CM capability was quantified for As-Is (2013), To-Be (2018) and Gap analyses. Findings of this research reveal that 1) capability for construction is quite competent, 2) capabilities for planning, design management, contracting, and risk management are found to be relatively low, where higher value can be added. In addition, it is found that R&D needs to be extended to develop systemized management techniques. It is also required to secure specialists and original technologies at national industrial level.

Development of a Sizing System and a Draping Pattern for Hip Protector based on 3D Data Analysis of Korean Older Women (한국 노인의 3D 인체특성 분석을 통한 Hip protector 치수체계 수립 및 입체패턴 설계)

  • Jeon, Eun-Jin;Park, Sei-Kwon;You, Hee-Cheon;Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • v.18 no.1
    • /
    • pp.120-129
    • /
    • 2016
  • This study aimed to develop an optimal sizing system and a draping pattern for hip protector based on an analysis of anthropometric characteristics of Korean older women. A hip protector is a specialized form of pants or underwear containing pads along the outside of each hip. The 3D body scan data of Korean older women were analyzed to identify their anthropometric characteristics and a four-size system with 93% of population accommodation was developed by clustering analysis based on key dimensions derived from factor analysis. The sizing system consists of small/short, large/short, small/tall, and large/tall. A 3D physical model and hip pads were fabricated; then, a hip protector was draped on the 3D model and hip pads. The sizing system of hip protector was analyzed in terms of size and shape and a draping pattern was compared on back center, back side, front side, front center and pad. Lastly, the pattern deformation and clothing pressure were analyzed using the virtual clothing system CLO. Virtual system have disadvantage of not to suggest the objective value. In the future research the wearing comfort and impact absorption of the hip protector needs to be tested and then a hip protector design will be finalized by considering the hip protector's size, material, comfort testing results, aesthetic appeal, protection effectiveness, and practical utility of everyday use.

A Study on the Effects of Flow Adaptive Gating System and Ceramic Filter on Flow Stability (흐름 적응 탕구계와 필터가 유동 안정성에 미치는 영향 연구)

  • Hwang, Ho-Young;Yin, Song;Nam, Cheol-Hee
    • Journal of Korea Foundry Society
    • /
    • v.37 no.3
    • /
    • pp.71-77
    • /
    • 2017
  • Casting defects produced during the casting process seriously affect the mechanical properties of the resulting products, reduce the performance capabilities of the product, and also result in economic losses. Therefore, this paper mainly investigates the causes of defects and methods by which to reduce these defects stemming from molten metal flows in a runner system of the type widely used in the sand mold casting process. The flow characteristics of a molten alloy are difficult to observe during the actual casting process. For this reason, a water model was used to observe the flow in the casting process, and the flow in each case was recorded using high-speed cameras as part of the experimental process of this study. Several repetitive experiments were performed to improve the accuracy of the experimental results. The traditional casting system was modified according to the design rules proposed by Campbell, and the system was termed flow-adaptive gating system with a water model. Comparing the flow characteristics of traditional and adaptive gating systems with a water model shows that the bubbles in the water in the latter case are reduced more significantly than in the former case. A ceramic filter system was adapted to the flow-adaptive gating system to minimize the instability of the flow during filling, which occurs as the fluid velocity in the runner increases. In additional, the flow behavior with and without the filter system were compared. The water model system in this work was shown to be able to verify that the adaptation of the filter system brings improvements by stabilizing the flow and reducing the amount of bubbles in the runner system. Moreover, using the flow-adaptive runner system with the filter system leads to considerably stable flows in the runner system.

Power Input of Pitched and Double-Stage Paddle Impeller in a Agitated Vessel (교반조에서 경사 및 2단 Impeller의 교반소요동력에 관한 연구)

  • Lee, Young-Sei;Kim, Moon-Kap;Kim, Jong-Shik
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.18-25
    • /
    • 1996
  • Power input in stirred vessel is especially important in the design of mixers, as well as the evaluation of mixing processes. A type of baffles in mechanically agitated vessels and power employed are major factors that determine the stirring efficiency in a large scale, multi-step processes. In the present study, power input in the totally baffled agitated vesseles was compared systematically in connection with several previous studies and adequate power input correlation was found to be : $Np_{(pitch)}=({\theta}/90^{\circ})Np_{(90^{\circ})}$ Power number correlation was dependent upon the distance of among the impeller in the agitated vesseles, as follows : $$Np=7.09(n_p)^{0.7}(\frac{b_(double)}{d})(\frac{H}{D})^{0.18}$$, $${n_p}^{0.7}(\frac{b_{(double)}}d)$$<2 $$Np=8.73\{(n_p)^{0.7}(\frac{b_{(double)}}{d})\}^{0.7}(\frac{H}{D})^{0.18}$$, $${n_p}^{0.7}(\frac{b_{(double)}}d)$$>2.

  • PDF

Workflow-based Usability Evaluation of Mobile Phone Messaging Functions (작업흐름도 기반 휴대전화 메시지 기능 사용성 평가)

  • Choi, Jae-Hyun;Kong, Yong-Ku;Jung, Myung-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.65-73
    • /
    • 2007
  • This study evaluated the short message service (SMS) and multimedia message service (MMS) usability of mobile phones and wireless internet services by performance failure rates and flowcharts that adopted the concept of state diagrams. Forty-eight participants who had an experience of using mobile phones were recruited by posting an advertisement on websites for the experiment. They carried out both SMS and MMS tasks with the mobile phones of LG Cyon and Samsung Anycall as well as the wireless internet services of LGT ez-i, KTF magicN, and SKT NATE. In general, Cyon had the lower performance failure rate than Anycall for SMS, and ez-i had the lowest performance failure rate than the other services for MMS. More specifically through the workflow analysis, most participants used hot keys to take 7-8 steps to send a SMS including a symbol and had a difficulty in typing the symbol. They also took 10-11 steps to send a MMS after taking and attaching two pictures. Anycall, magicN, and NATE had significantly large error and failure rates due to the limited option of the menu paths that users could take and poor compatibilities of menu names and between menu and navigation keys. This study showed the possibility of use of flowcharts for systematic and specific usability evaluation methods and found the causes of performance errors and failures with mobile phones and wireless internet services to provide insight into their design.

Formation and Role of Acid Sites of Heteropoly Acid Catalysts (헤테로폴리산 촉매의 산점 형성과 역할)

  • Song, In Kyu;Lee, Jong Koog;Song, Jae Cheon;Lee, Wha Young
    • Applied Chemistry for Engineering
    • /
    • v.5 no.3
    • /
    • pp.431-437
    • /
    • 1994
  • The role and the formation of surface and bulk acid sites of heteropoly acids were studied by examining ethanol conversion and MTBE (methyl t-butyl ether) decomposition reaction. In ethanol dehydration diethylether was formed on the surface acid site of 12-tungstophosphoric acid, whereas ethylene was formed in the bulk acid site of the catalyst. It was revealed that water reinforced the bulk acid site of the catalyst, while organic base decreased the bulk acid function of the catalyst. The formation of acid sites of metal salts was due to hydrolysis of crystalline water and/or partial substitution of metal, and with hydrogen treatment, the acid site was reappeared. Also catalyst design as a selective oxidation catalyst was possible by controlling acid function of heteropoly acid catalyst.

  • PDF

Wearing Comfort Evaluation of a Summer Flight Suit to Improve Ventilation (통기성 향상을 위한 하계비행복 설계 및 착용쾌적성 평가)

  • Jeon, Eun-Jin;Park, Sei-Kwon;You, Hee-Cheon;Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • v.16 no.3
    • /
    • pp.485-491
    • /
    • 2014
  • This study verified the effect of summer flight ventilation developed in a previous study based on wearing comfort evaluation. Seven healthy males in their twenties volunteered for this experiment conducted in aclimatic chamber. The experiment consisted of three consecutive periods of rest (20 minutes), running on a treadmill (10 minutes) and recovery (20 minutes). A comparative evaluation was conducted on the general flight suit which had no ventilation holes and summer flight suit that use subjective satisfaction measures and objective measures. The subjective satisfaction was evaluated according to the criteria of temperature sensation, wet sensation, thermal comfort and fatigue sensation. The objective satisfaction was measured by skin temperature, microclimate (temperature and humidity), sweat rate and thermography. The comparative wearing evaluation identified the summer flight suit decreased the temperature between skin and suit by $0.42^{\circ}C$ (upper arm), $0.9^{\circ}C$ (calf) and the skin temperature by $0.3^{\circ}C$ (shoulder), $0.4^{\circ}C$ (upper arm), $0.5^{\circ}C$ (calf) as compared to the general flight suit. The humidity inside the summer flight suit decreased at head (7.73%), shoulder (5.86%), upper arm (5.26%), and calf (8.73%) compared to the one inside the general flight suit. Thermography showed that the air flowed through ventilation holes (neck and armpit). The design of ventilation holes applied to the summer flight suit can be applicable to overall clothing that requires thermal comfort such as dust-free garments, mechanical clothing and combat uniforms.