• 제목/요약/키워드: Inductor current

검색결과 678건 처리시간 0.019초

전류변성기 비교기를 이용한 인덕터의 절대 평가 (Absolute Evaluation of Inductor Using Current Transformer Comparator)

  • 김윤형;정재갑;한상길;김한준;한상옥
    • 전기학회논문지P
    • /
    • 제57권3호
    • /
    • pp.279-284
    • /
    • 2008
  • We have developed two absolute evaluation technology of inductor using current transformer (CT) comparator. One is the method that the reactance of inductor is obtained by analysing the equivalent circuit of CT with inductor connected to series at secondary terminal of CT. The other is the method that the reactance of inductor is obtained by comparing phase displacement of current flowing on inductor by using CT comparator. These technologies have the advantage to apply up to rated current and voltage of inductor. The method was applied to inductors under test in the range of $100 {\mu}H{\sim}1\;H$. The inductance of the inductor under test obtained in this study are consistent with those measured by LCR meter using the same inductor within an expanded uncertainty (k = 2) in the overall range of inductance.

Design of Multi-winding Inductor for Minimum Inductor Current Ripple Using Optimized Coupling Factor

  • Kang, Taewon;Suh, Yongsug
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.231-232
    • /
    • 2016
  • This paper investigates the design of multi-winding coupled inductor for minimum inductor current ripple. Based on the general circuit model of coupled inductor together with the operating principles of dc-dc converter, the relationship between the ripple size of inductor current and the coupling factor is derived under the different duty ratio. The optimal coupling factor of n-phase multi-winding coupled inductor which corresponds to a minimum inductor ripple current becomes -(1/n-1), i.e. a complete inverse coupling without leakage inductance, as the duty ratio of steady-state operating point approaches 1/n, 2/n, ${\cdots}$ or (n-1)/n. In an opposite manner, the optimal coupling factor value of zero, i.e. zero mutual inductance, is required when the duty ratio of steady-state operating point approaches either zero or one. Therefore, coupled inductors having optimal coupling factor can minimize the ripple current of inductor and inductor size.

  • PDF

Single-Switch Buck Converter with a Ripple-Free Inductor Current

  • Do, Hyun-Lark
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.507-511
    • /
    • 2011
  • This paper presents a single-switch buck converter with a ripple-free inductor current. In the proposed converter, the filter inductor current ripple is completely removed by utilizing an auxiliary circuit consisting of an additional winding of the filter inductor, an auxiliary inductor, and an auxiliary capacitor. Moreover, the ripple-free current characteristic is maintained under both light load and full load conditions. The theoretical analysis and performance of the proposed converter were verified with a 110W experimental prototype operating at a 107 kHz switching frequency.

Design of Three-winding Coupled Inductor for Minimum Current Ripple in Battery Chargers

  • Kang, Taewon;Suh, Yongsug
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2015년도 전력전자학술대회 논문집
    • /
    • pp.195-196
    • /
    • 2015
  • This paper investigates the design of coupled inductor for minimum inductor current ripple in rapid traction battery charger systems. Based on the general circuit model of coupled inductor together with the operating principles of dc-dc converter, the relationship between the ripple size of inductor current and the coupling factor is derived under the different duty ratio. The optimal coupling factor which corresponds to a minimum inductor ripple current becomes -0.5, i.e. a complete inverse coupling without leakage inductance, as the steady-state duty ratio operating point approaches 1/3 or 2/3. In an opposite manner, the optimal coupling factor value of zero, i.e. zero mutual inductance, is required when the steady-state duty ratio operating point approaches either zero or one. Coupled inductors having optimal coupling factor can minimize the ripple current of inductor and battery current resulting in a reliable and efficient operation of battery chargers.

  • PDF

가변 인덕터를 적용한 2상 인터리브드 벅 컨버터의 전류 불평형 저감에 관한 연구 (A Study on the Reduction of Current Unbalancing of Two-phase Interleaved Buck Converter using Variable Inductor)

  • 임재성;차헌녕
    • 전력전자학회논문지
    • /
    • 제27권5호
    • /
    • pp.417-424
    • /
    • 2022
  • This study proposes a current-balancing technique for an interleaved buck converter using a variable inductor and a snubber capacitor. The proposed scheme balances the inductor current by using the variable inductor and enables zero voltage switching under all load ranges. With the variable inductor, the ripple of inductor current changes according to load variation. In addition, a 1.6 kW prototype is built to verify the validity of the proposed scheme, and the experimental results are successfully obtained.

결합인덕터와 직렬 공진을 이용한 비절연 다중 LED 전류 평형 기법 (Nonisolated Multichannel LED Current Balancing Scheme Using Coupled Inductor and Series Resonant Converter)

  • 신유용;홍다헌;최병조;차헌녕
    • 전력전자학회논문지
    • /
    • 제26권4호
    • /
    • pp.249-255
    • /
    • 2021
  • A novel current balancing technique for multichannel light-emitting diode (LED) that uses a series resonance and coupled inductor is proposed in this paper. The proposed LED driver balances output currents through frequency control and enables zero-voltage switching. The proposed converter utilizes the charge balance condition of the resonant capacitor and the current sharing function of the coupled inductor to achieve whole LED current balancing without an additional controller. The proposed coupled inductor can integrate the current balancing function and the resonant inductor, so the power density can be increased by reducing the number of magnetic devices. A 40 W prototype is built to verify the validity of this LED driver, and the experimental results are successfully obtained.

Embedded Switched-Inductor Z-Source Inverters

  • Nguyen, Minh-Khai;Lim, Young-Cheol;Chang, Young-Hak;Moon, Chae-Joo
    • Journal of Power Electronics
    • /
    • 제13권1호
    • /
    • pp.9-19
    • /
    • 2013
  • In this paper, a ripple input current embedded switched-inductor Z-source inverter (rESL-ZSI) and a continuous input current embedded switched-inductor Z-source inverter (cESL-ZSI) are proposed by inserting two dc sources into the switched-inductor cells. The proposed inverters provide a high boost voltage inversion ability, a lower voltage stress across the active switching devices, a continuous input current and a reduced voltage stress on the capacitors. In addition, they can suppress the startup inrush current, which otherwise might destroy the devices. This paper presents the operating principles, analysis, and simulation results, and compares them to the conventional switched-inductor Z-source inverter. In order to verify the performance of the proposed converters, a laboratory prototype was constructed with 60 $V_{dc}$ input to test both configurations.

Analysis and Design of Coupled Inductors for Two-Phase Interleaved DC-DC Converters

  • Lee, Jong-Pil;Cha, Honnyong;Shin, Dongsul;Lee, Kyoung-Jun;Yoo, Dong-Wook;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • 제13권3호
    • /
    • pp.339-348
    • /
    • 2013
  • Multiphase dc-dc converters are widely used in modern power electronics applications due to their advantages over single-phase converters. Such advantages include reduced current stress in both the switching devices and passive elements, reduced output current ripple, and so on. Although the output current ripple of a converter can be significantly reduced by virtue of the interleaving effect, the inductor current ripple cannot be reduced even with the interleaving PWM method. One way to solve this problem is to use a coupled inductor. However, care must be taken in designing the coupled inductor to maximize its performances. In this paper, a detailed analysis of a coupled inductor is conducted and the effect of a coupled inductor on current ripple reduction is investigated extensively. From this analysis, a UU core based coupled inductor structure is proposed to maximize the performance of the coupled inductor.

On-Chip 나선형 인덕터의 품질계수 향상을 통한 저잡음 RF 전치부 설계 (A Design of Low Noise RF Front-End by Improvement Q-factor of On-Chip Spiral Inductor)

  • 고재형;정효빈;최진규;김형석
    • 전기학회논문지
    • /
    • 제58권2호
    • /
    • pp.363-368
    • /
    • 2009
  • In the paper, we confirmed improvement Noise figure of the entire RF front-end using spiral inductor with PGS(Patterned Ground Shield) and current bleeding techniques. LNA design is to achieve simultaneous noise and input matching. Spiral inductor in input circuit of LNA inserted PGS for betterment of Q-factor. we modeling inductor using EM simulator, so compared with inductor of TSMC 0.18um. We designed and simulation the optimum structure of PGS using Taguchi's method. We confirmed enhancement of noise figure at LNA after substituted for inductor with PGS. Mixer designed using current bleeding techniques for reduced noise. We designed LNA using inductor with PGS and Mixer using current bleeding techniques, so confirmed improvement of noise figure.

Optimized Coupling Factor for Minimizing Ripple Current of Coupled Inductor under Variable Duty in Rapid Traction Battery Charger

  • Kang, Taewon;Chae, Beomseok;Kang, Tahyun;Suh, Yongsug
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2014년도 전력전자학술대회 논문집
    • /
    • pp.335-336
    • /
    • 2014
  • This paper investigates the design of coupled inductor for minimum inductor current ripple in rapid traction battery charger systems. Based on the general circuit model of coupled inductor together with the operating principles of dc-dc converter, the relationship between the ripple size of inductor current and the coupling factor is derived under the different duty ratio. The optimal coupling factor which corresponds to a minimum inductor ripple current becomes -1, i.e. a complete inverse coupling without leakage inductance, as the steady-state duty ratio operating point approaches 0.5. In an opposite manner, the optimal coupling factor value of zero, i.e. zero mutual inductance, is required when the steady-state duty ratio operating point approaches either zero or one. Coupled inductors having optimal coupling factor can minimize the ripple current of inductor and battery current resulting in a reliable and efficient operation of battery chargers.

  • PDF