• Title/Summary/Keyword: Inductive system

Search Result 513, Processing Time 0.04 seconds

A Study on an Improvement of the Ignitability Using the High Frequency Ignition System (고주파점화장치를 사용한 착화성 향상에 관한 연구)

  • Lee, Jung-Sun;Gang, Byeong-Mu;Ha, Jong-Ryul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.359-368
    • /
    • 1996
  • For fuel economy and pollutant reduction, the interests in lean burn has increased recently. The purpose of this research is to develop a High Frequency Ignition System (HIS) that can make powerful ignition. We studied relations between performance of HIS and probability of inflammation under various ignition conditions. It is concluded that the portion of capacitance energy to the total energy is comparatively larger and that the optimum spark interval and spark duration are dependent upon conditions of Constant Volume Combustion Chamber.

DC Superconducting fault current limiter characteristic test with a DC circuit breaker

  • So, Jooyeong;Choi, Kyeongdal;Lee, Ji-kwang;Kim, Woo-Seok
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.2
    • /
    • pp.19-23
    • /
    • 2021
  • We have studied the breaking system that combines a resistive superconducting fault current limiter (SFCL) and a DC circuit breaker for DC fault current. To verify the design of the 15 kV DC SFCL, which was driven from the previous work, a 500 V DC system was built and a scale-down SFCL were manufactured. The manufactured SFCL module was designed as a bifilar coil which is a structure that minimizes inductive reactance. The manufactured SFCL module has been experiment to verify characteristics of the current-limiting performance in the DC 500 V system. Also, the manufactured FCL module was combined with the DC circuit breaker to be experimented to analyze the breaking performance. As a result of the experiment, when SFCL was combined to the DC circuit breaker, the energy dissipation received by the DC circuit breaker was reduced by up to 84% compared to when the DC circuit breaker operates alone. We are preparing methods and experiments for the optimal method for much higher performance as a future work.

Design of Clustering CoaT Vision Model Based on Transformer (Transformer 기반의 Clustering CoaT 모델 설계)

  • Bang, Ji-Hyeon;Park, Jun;Jung, Se-Hoon;Sim, Chun-Bo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.546-548
    • /
    • 2022
  • 최근 컴퓨터 비전 분야에서 Transformer를 도입한 연구가 활발히 연구되고 있다. 이 모델들은 Transformer의 구조를 거의 그대로 사용하기 때문에 확장성이 좋으며 large 스케일 학습에서 매우 우수한 성능을 보여주었다. 하지만 Transformer를 적용한 비전 모델은 inductive bias의 부족으로 학습 시 많은 데이터와 시간을 필요로 하였다. 그로 인하여 현재 많은 Vision Transformer 개선 모델들이 연구되고 있다. 본 논문에서도 Vision Transformer의 문제점을 개선한 Clustering CoaT 모델을 제안한다.

An Expert System for Foult Diagnosis in a System (전력계통의 고장진단을 위한 전문가 시스템의 연구)

  • Park, Young-Moon;Lee, Heung-Jae
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.241-245
    • /
    • 1989
  • A knowledge based expert system is a computer program that emulates the reasoning process of a human expert in a specific problem domain. This paper presents an expert system to diagnose the various faults in power system. The developed expert system is represented considering two points; the possibility of solution and the fast processing speed. As uncertainties exist in the facts and rules which comprise the knowledge base of the expert system, Certainty Factor, which is based on the confirmation theory is used for the inexact reasoning. Also, as the diagnosis problem requires the inductive reasoning process in nature, the solution is imperfect and not unique in general. So the expert system is designed to generate all the possible hypothesis in order of the possibility and also it can explain the propagation procedure of the faults for each solution using the built in backtracking mechanism. In realization of the expert system, the processing speed is greatly dependent upon the problem representation, reasoning scheme and search strategy. So, in this paper the fault diagnosis problem itself is analysed from the view point of Artificial Intelligence and as a result, the expert system has the following basic features. 1) The certainty factor is adopted in the inference engine for inexact reasoning. 2) Problem apace is represented using the problem reduction technique. 3) Bidirectional reasoning scheme is used. 4) Best first search strategy is adopted for rapid processing. The expert system was developed us ing PROLOG language.

  • PDF

Analysis of Key Parameters for Inductively Coupled Power Transfer Systems Realized by Detuning Factor in Synchronous Generators

  • Liu, Jinfeng;Li, Kun;Jin, Ningzhi;Iu, Herbert Ho-Ching
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1087-1098
    • /
    • 2019
  • In this paper, a detuning factor (DeFac) method is proposed to design the key parameters for optimizing the transfer power and efficiency of an Inductively Coupled Power Transfer (ICPT) system with primary-secondary side compensation. Depending on the robustness of the system, the DeFac method can guarantee the stability of the transfer power and efficiency of an ICPT system within a certain range of resistive-capacitive or resistive-inductive loads. A MATLAB-Simulink model of a ICPT system was built to assess the system's main evaluation criteria, namely its maximum power ratio (PR) and efficiency, in terms of different approaches. In addition, a magnetic field simulation model was built using Ansoft to specify the leakage flux and current density. Simulation results show that both the maximum PR and efficiency of the ICPT system can reach almost 70% despite the severe detuning imposed by the DeFac method. The system also exhibited low levels of leakage flux and a high current density. Experimental results confirmed the validity and feasibility of an ICPT system using DeFac-designed parameters.

Development of a wireless telemetry system based on MICS standard (MICS 표준에 기반한 무선 텔레메트리 시스템 개발)

  • Lee, Seung-Ha;Park, Il-Yong
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.63-71
    • /
    • 2009
  • It is said that the desirable bio-signal measurement and stimulation system should be an implantable type if the several problems such as biocompatibility, electrical safety, and so on are overcome. In addition to the biocompatibility issue, a robust RF communication and a stable electrical power source for the implantable bio-signal measurement and stimulation system are very important matters. In this paper, a wireless telemetry system which adopts the FCC's approved MICS (medical implant communication service) protocol and a wireless power transmission has been proposed. The proposed system composed of a base station (BS) and an implantable medical device (IMD) has the advantages that the interference with other RF devices can be reduced by the use of the specially assigned MICS frequency band of 402.MHz to 405 MHz. Also, the proposed system includes various functions of a multi-channel bio-signal acquisition and an electric stimulation. Since the electrical power for the IMD can be provided by the inductive link between PCB patterned coils, the IMD needs no battery so that the IMD can be smaller size and much less dangerous than the active type IMD which includes the internal battery. Finally, the validity as a wireless telemetry system has been demonstrated through the experiments by using the implemented BS and IMD.

A Study on the Application Impacts on Korean Power System by Introducing SFCL

  • Kim, Jong-Yul;Park, Heung-Kwan;Yoon, Jae-Young
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.1
    • /
    • pp.1-6
    • /
    • 2003
  • As power systems grow more complex and power demands increase, the fault current tends to gradually increase. In the near future, the fault current will exceed a circuit breaker rating for some substations, which is an especially important issue in the Seoul metropolitan area because of its highly meshed configuration. Currently, the Korean power system is regulated by changing the 154 ㎸ system configuration from a loop connection to a radial system, by splitting the bus where load balance can be achieved, and by upgrading the circuit breaker rating. A development project applying 154 ㎸ Superconducting Fault Current Limiter(SFCL) to 154 ㎸ transmission systems is proceeding with implementation slated for after 2010. In this paper, the resistive and inductive SFCLs are applied to re-duce the fault current in Korean power system and their technical and economic impacts are evaluated. The results show that the application of SFCL can eliminate the need to upgrade the circuit breaker rat-ing and the economic potential of SFCL is evaluated positively.

Development of Individual Electronic Identification System Using the Inductive Transmission Method for Stockbreeding Management (개체관리를 위한 인덕터 전송방식의 개체인식 시스템 개발)

  • Ko, S.C.;Han, B.S.;Lee, J.;Kim, Y.J.;Lee, S.Y.
    • Journal of Biosystems Engineering
    • /
    • v.27 no.5
    • /
    • pp.451-458
    • /
    • 2002
  • This paper introduces that livestock can be effectively managed by an individual electronic identification system. The proposed system was composed of the original code transmitter, receiver, personal computer, micro-processor, and RS485 telecommunications module. In the individual electronic identification system, the signal including encoded information of a milk-cow was transmitted from an original code transmitter to a micro-processor through RS485 telecommunications module. The transmitted signal can be successfully displayed in a personal computer. This system can be managed by 9999 individuals with a original code transmitter. The recognition rate of an individual electronic identification system was 98.5% and also auto-feeder operates very well. an individual electronic identification system was developed for automation of stockbreeding management. To automate the breeding management, it is necessary to obtain and analyze the individual information distinguished from others preferentially.

Development of an Automatic Comprehensive Condition Diagnosis System for Inductive Loop Detector Using Magnetic Field (자기장을 이용한 루프검지기 자동진단시스템 개발)

  • Kim, Nam-Sun;Lee, Seung-Hwan;Oh, Young-Tae;Lee, Choul-Ki;Kang, Jeung-Sik
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.5 s.83
    • /
    • pp.123-134
    • /
    • 2005
  • This research aims at developing a new method which can replace the existing method. known as the quality factor(Q factor) method by an L-R-C test for use in the performance test of inductive loop detectors(ILD) being installed and maintained. In this study, a sensor to detect a magnetic field in terms of frequency and intensity, a method to collect field data, the method of analysis, and the method of diagnosis were developed. An automatic diagnosis system which was developed to overcome those drawbacks has the following features : First, field data is collected automatically by a test vehicle equipped with magnetic field sensors that is running can be said to along the roadway and. thus, the new system completely overcome the roadway and, thus, the new system can be said to completely overcome the inefficiency of the existing method second, since the magnetic fold generated from the ILD is the final output of the whole system of ILD, the existing problem has been solved. third. since each of the detection area by height is collected by the magnetic sensors installed by height. a basic for the identification of the vehicle types to be detectable and the setting of adjustment factors has been made. For the automatic diagnosis system developed during in this study, a reliability test was carried out by comparing vehicle times of ILD installed ideally.

The Design and Implementation of a Control System for TCSC in the KERI Analog Power Simulator

  • Jeon, Jin-Hong;Kim, Kwang-Su;Kim, Ji-Won;Oh, Tae-Kyoo
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.3
    • /
    • pp.129-133
    • /
    • 2004
  • This paper deals with the design and implementation of a TCSC (Thyristor Controlled Series Capacitor) simulator, which is a module for an analog type power system simulator. Principally, it presents configuration of controller hardware/software and its experimental results. An analog type power system simulator consists of numerous power system components, such as various types of generator models, scale-downed transmission line modules, transformer models, switches and FACTS (Flexible AC Transmission System) devices. It has been utilized for the verification of the control algorithm and the study of system characteristics analysis. This TCSC simulator is designed for 50% line compensation rate and considered for damping resister characteristic analysis. Its power rate is three phase 380V 20kVA. For hardware extendibility, its controller is designed with VMEBUS and its main CPU is TMS320C32 DSP (Digital Signal Processor). For real time control and communications, its controller is applied to the RTOS (Real Time Operation System) for multi-tasking. This RTOS is uC/OS-II. The experimental results of capacitive mode and inductive mode operations verify the fundamental operations of the TCSC.