• Title/Summary/Keyword: Inductive Powerline Communications

Search Result 5, Processing Time 0.018 seconds

Communication Performance of Inductive Coupler Using Nanocrystalline Alloy (나노결정립 합금을 이용한 유도형 결합기의 통신 성능)

  • Yang, Seung-Ho;Jeong, Jae-Hwan;Sohn, Kyung-Rak
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.05a
    • /
    • pp.154-154
    • /
    • 2018
  • Conventional inductive powerline communications typically use ferrite cores. However, since the recent nanocrystalline cores are expected to perform better, this paper aims to measure the performance of inductive couplers using nanocrystalline cores. To do this, we used inductive powerline communications to observe the communication range when increasing the number of cores from one to five. This experiment shows that we have the best communication performance when we connect 5 cores.

  • PDF

A Study on Broadband Inductive Coupler using Impregnated Nanocrystalline Ribbon (함침된 나노결정립 리본을 이용한 광대역 유도형 결합기 연구)

  • Kim, Hyun-Sik;Ju, Woo-Jin;Sohn, Kyung-Rak
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.599-605
    • /
    • 2019
  • Ferrite cores are used as a soft magnetic material in the fabrication of couplers for inductive powerline communication (PLC). However, it is difficult to adjust the size freely according to the power-line and power-grid environment. In this paper, we report that a nano-crystalline alloy with higher permeability than ferrite can be used as an inductive coupler for non-contact PLC. Since nano-crystalline are produced in the form of a thin ribbon, the size of the coupler can be freely controlled by the number of ribbons wound on the toroidal core. It was fabricated with induction type coupler and showed to be suitable for non-contact power line communication. Experimental results show that the communication bandwidth is 45 Mbps for 100 m and 8 Mbps for 200 m under the current fluctuation of less than 100 A, and the reception ratio is 100%.

A Study on Application of Inductive PLC to Electric Charging System (유도형 전력선 통신의 전기충전시스템 적용 연구)

  • Sohn, Kyung-Rak;Jeong, Jae-Hwan;Yang, Seung-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.05a
    • /
    • pp.153-153
    • /
    • 2018
  • In this paper, we have represented basic experiment results for the application of electric vehicle powerline communication using an induction type coupler. The coupler was fabricated using nano-crystalline alloy and it was applied to the charging system of electric vehicles to measure the communication performance. Experimental results showed a channel bandwidth over 48 Mbps.

  • PDF

Application of High-Current PLC of Soft Magnetic Core Type Coupler (연자성체 코어형 결합기의 대전류 전력선통신 적용)

  • Jeong, Jae-Hwan;Yang, Seung-Ho;Soh, Kyung-Rak
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.05a
    • /
    • pp.155-155
    • /
    • 2018
  • In this study, we measured the communication performance of inductive coupler under high current condition. Ferrite and nanocrystalline cores were used to compare the available PLC communication range and bandwidth for current fluctuations.

  • PDF

Channel characteristics of multi-path power line using a contactless inductive coupling unit (비접촉식 유도성 결합기를 이용한 다중경로 전력선 채널 특성)

  • Kim, Hyun-Sik;Sohn, Kyung-Rak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.799-804
    • /
    • 2016
  • Broadband powerline communication (BPLC) uses distribution lines as a medium for achieving effective bidirectional data communication along with electric current flow. As the material characteristics of power lines are not good at the communication channel, the development of power line communication (PLC) systems for internet, voice, and data services requires measurement-based models of the transfer characteristics of the network suitable for performance analysis by simulation. In this paper, an analytic model describing a complex transfer function is presented to obtain the attenuation and path parameters for a multipath power line model. The calculated results demonstrated frequency-selective fading in multipath channels and signal attenuation with frequency, and were in good agreement with the experimental results. Inductive coupling units are used as couplers for coupling the signal to the power line to avoid physical connections to the distribution line. The inductance of the ferrite core, which depends on the frequency, determines the cut-off frequency of the inductive coupler. Coupling loss can be minimized by increasing the number of windings around the coupler. Coupling efficiency was improved by more than 6 dB with three windings compared to the results obtained with one winding.