• 제목/요약/키워드: Induction expression

검색결과 2,170건 처리시간 0.031초

NLRC4 Inflammasome-Mediated Regulation of Eosinophilic Functions

  • Ilgin Akkaya;Ece Oylumlu;Irem Ozel;Goksu Uzel;Lubeyne Durmus;Ceren Ciraci
    • IMMUNE NETWORK
    • /
    • 제21권6호
    • /
    • pp.42.1-42.20
    • /
    • 2021
  • Eosinophils play critical roles in the maintenance of homeostasis in innate and adaptive immunity. Although primarily known for their roles in parasitic infections and the development of Th2 cell responses, eosinophils also play complex roles in other immune responses ranging from anti-inflammation to defense against viral and bacterial infections. However, the contributions of pattern recognition receptors in general, and NOD-like receptors (NLRs) in particular, to eosinophil involvement in these immune responses remain relatively underappreciated. Our in vivo studies demonstrated that NLRC4 deficient mice had a decreased number of eosinophils and impaired Th2 responses after induction of an allergic airway disease model. Our in vitro data, utilizing human eosinophilic EoL-1 cells, suggested that TLR2 induction markedly induced pro-inflammatory responses and inflammasome forming NLRC4 and NLRP3. Moreover, activation by their specific ligands resulted in caspase-1 cleavage and mature IL-1β secretion. Interestingly, Th2 responses such as secretion of IL-5 and IL-13 decreased after transfection of EoL-1 cells with short interfering RNAs targeting human NLRC4. Specific induction of NLRC4 with PAM3CSK4 and flagellin upregulated the expression of IL-5 receptor and expression of Fc epsilon receptors (FcεR1α, FcεR2). Strikingly, activation of the NLRC4 inflammasome also promoted expression of the costimulatory receptor CD80 as well as expression of immunoregulatory receptors PD-L1 and Siglec-8. Concomitant with NLRC4 upregulation, we found an increase in expression and activation of matrix metalloproteinase (MMP)-9, but not MMP-2. Collectively, our results present new potential roles of NLRC4 in mediating a variety of eosinopilic functions.

반하가 천식이 유발된 생쥐 폐조직의 유전자 발현에 미치는 영향 (Effects of Pinelliae Rhizoma on Gene Expression of Lung Tissue from Asthma induced Mice)

  • 이명진;김종한;최정화;박수연
    • 한방안이비인후피부과학회지
    • /
    • 제21권3호
    • /
    • pp.36-51
    • /
    • 2008
  • Objective : This study investigated the effects of PR(Pinelliae Rhizoma) on gene expression of lung tissue resected from asthma induced mice using intra-nasal instillation. Methods : Gene expression levels were measured using a microarray technique, and a functional analysis on these genes was conducted. Results : A total of 3270 genes were up-regulated or down-regulated, 860 genes which were lowered by induction of asthma were restored to those of naive animals, Furthermore hand, 1235 genes were lowered to normal levels, which were elevated by induction of asthma. Most of changed genes were involved in signalling pathways. Genes in which expression levels were restored by oral administration of PR were involved in MAPK pathway, focal adhesion, and regulation of actin cytoskeleton etc. Genes of which expression levels were lowered by oral administration of PR were involved in rhodopsin-like receptor activity, zinc ion binding and ATP binding. These genes were also involved in neuroactive ligand receptor interaction, the JAK-STAT signaling pathway and also the T-cell receptor signaling pathway. Conclusion : These results demonstrate the strong possibility that the mechanisms of PR on asthma are involved in neuroactive ligand receptor interaction pathway or related molecules.

  • PDF

Inhibitory Effect of Bee Venom Toxin on the Growth of Cervix Cancer C33A Cells via Death Receptor Expression and Apoptosis

  • Ko, Seong Cheol;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • 제31권2호
    • /
    • pp.75-85
    • /
    • 2014
  • Objectives : We investigated whether bee venom(BV) inhibit cell growth through enhancement of death receptor expressions in the human cervix cancer C33A cells. Methods : BV($1{\sim}5{\mu}g/ml$) inhibited the growth of cervix cancer C33A cells by the induction of apoptotic cell death in a dose dependent manner. Results : Consistent with apoptotic cell death, expression of Fas, death receptor(DR) 3, 4, 5 and 6 was increased concentration dependently in the cells. Moreover, Fas, DR3 and DR6 revealed more sensitivity to BV. Thus, We reconfirmed whether they actually play a critical role in anti-proliferation of cervix cancer C33A cells. Consecutively, expression of DR downstream pro-apoptotic proteins including caspase-8, -3, -9 was upregulated and Bax was concomitantly overwhelmed the expression of Bcl-2. NF-${\kappa}B$ were also inhibited by treatment with BV in C33A cells. Conclusions : These results suggest that BV could exert anti-tumor effect through induction of apoptotic cell death in human cervix cancer C33A cells via enhancement of death receptor expression, and that BV could be a promising agent for preventing and treating cervix cancer.

Cadmium increases ferroportin-1 gene expression in J774 macrophage cells via the production of reactive oxygen species

  • Park, Bo-Yeon;Chung, Ja-Yong
    • Nutrition Research and Practice
    • /
    • 제3권3호
    • /
    • pp.192-199
    • /
    • 2009
  • Cadmium intoxication has been associated with the dysregulation of iron homeostasis. In the present study, we investigated the effect of cadmium on the expression of ferroportin 1 (FPN1), an important iron transporter protein that is involved in iron release from macrophages. When we incubated cadmium with J774 mouse macrophage cells, FPN1 mRNA levels were significantly increased in a dose- and time-dependent manner. Furthermore, the cadmium-induced FPN1 mRNA expression was associated with increased levels of FPN1 protein. On the other hand, cadmium-mediated FPN1 mRNA induction in J774 cells was completely blocked when cells were co-treated with a transcription inhibitor, acitomycin D. Also, cadmium directly stimulated the activity of the FPN1-promoter driven luciferase reporter, suggesting that the cadmium up-regulates FPN1 gene expression in a transcription-dependent manner. Finally, cadmium exposure to J774 macrophages increased intracellular reactive oxygen species (ROS) levels by ${\sim}2$-fold, compared to untreated controls. When J774 cells were co-treated with antioxidant N-acetylcystein, the cadmium-induced FPN1 mRNA induction was significantly attenuated. In summary, the results of this study clearly demonstrated that cadmium increased FPN1 expression in macrophages through a mechanism that involves ROS production, and suggests another important interaction between iron and cadmium metabolism.

Inductional Expression of the Human Lactadherin Gene in Mouse Mammary Epithelial Cells

  • Kwon, Mo-Sun;Koo, Bon-Chul;Kim, Teoan
    • 한국수정란이식학회:학술대회논문집
    • /
    • 한국수정란이식학회 2002년도 국제심포지엄
    • /
    • pp.94-94
    • /
    • 2002
  • Lactadherin (formerly known as BA46), a major glycoprotein of the human milk fat globule membrane, is abundant in human breast milk and breast carcinomas and may prevent symptomatic rotavirus infections. In this study, under the control of mouse whey acidic protein (WAP) promoter, the expression pattern of lactadherin (Ltd) in lactogenic hormone-dependent mouse mammary epithelial cell line HC11 were tested. pLNWLtd construct containing 2.4 kilobases of the WAP promoter and 1.5 kilobases of human lactadherin gene was stably transfered into HC11 cells using retroviral vector system. Integration and expression level of the transgene was estimated using PCR and RT-PCR, respectively. Prominent induction of Ltd gene under the WAS promoter was accomplished in the presence of insulin, hydrocortisone and prolactin, while induction with insulin alone resulted in lower expression. Our results demonstrate that the expression of the transgene is increased by synergistic effect of several lactogenic hormones, including insulin, hydrocortisone, and prolactin.

  • PDF

패혈증에서 PD-L1 (Programmed Cell Death-ligand 1)의 발현 증가 기전 (Induction Mechanism of PD-L1 (Programmed Cell Death-ligand 1) in Sepsis)

  • 이상민
    • Tuberculosis and Respiratory Diseases
    • /
    • 제65권4호
    • /
    • pp.343-350
    • /
    • 2008
  • PD-L1 is expressed in a variety of antigen-presenting cells and provides T cell tolerance via ligation with its receptor PD-1 and B7-1 on T cells. Stimulation with lipopolysaccharide (LPS) can increase the level of PD-L1 expression in B cells and macrophages, which suggests that this molecule plays a role in the immunosuppression observed in severe sepsis. The aim of this study was to identify which of the downstream pathways of TLR4 are involved in the up-regulation of PD-L1 by LPS in macrophages. Flow cytometry was used to examine the expression of PD-L1 in RAW 264.7 macrophages stimulated with LPS. The following chemical inhibitors were used to evaluate the role of each pathway: LY294002 for PI3K/Akt, SB202190 for p38 MAPK, and U0126 for MEK. LPS induced the expression of PD-L1 in a time- and dose-dependent manner. Transfection of siRNA for TLR4 suppressed the induction of PD-L1. Pretreatment with LY294002 and SB202190 decreased the level of PD-L1 expression but U0126 did not. Overall, the PI3K/Akt and p38 MAPK pathways are involved in the up-regulation of PD-L1 expression in RAW 264.7 macrophages stimulated with LPS.

Cell Type-Specific and Inducible PTEN Gene Silencing by a Tetracycline Transcriptional Activator-Regulated Short Hairpin RNA

  • Wang, Shan;Wang, Ting;Wang, Tao;Jia, Lintao
    • Molecules and Cells
    • /
    • 제38권11호
    • /
    • pp.959-965
    • /
    • 2015
  • Inducible and reversible gene silencing in desired types of cells is instrumental for deciphering gene functions using cultured cells or in vivo models. However, efficient conditional gene knockdown systems remain to be established. Here, we report the generation of an inducible expression system for short hairpin RNA (shRNA) targeted to PTEN, a well-documented dual-specificity phosphatase involved in tumor suppression and ontogenesis. Upon induction by doxycycline (DOX), the reverse tetracycline transcriptional activator (rtTA) switched on the concomitant expression of GFP and a miR-30 precursor, the subsequent processing of which released the embedded PTEN-targeted shRNA. The efficacy and reversibility of PTEN knockdown by this construct was validated in normal and neoplastic cells, in which PTEN deficiency resulted in accelerated cell proliferation, suppressed apoptosis, and increased invasiveness. Transgenic mice harboring the conditional shRNA-expression cassette were obtained; GFP expression and concurrent PTEN silencing were observed upon ectopic expression of rtTA and induction with Dox. Therefore, this study provides novel tools for the precise dissection of PTEN functions and the generation of PTEN loss of function models in specific subsets of cells during carcinogenesis and ontogenesis.

Dynamic Gene Expression Profiling of Escherichia coli in Carbon Source Transition from Glucose to Acetate

  • Oh Min-Kyu;Cha Mee-Jeong;Lee Sun-Gu;Rohlin Lars;Liao James C.
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권4호
    • /
    • pp.543-549
    • /
    • 2006
  • DNA microarray was used to study the transcription profiling of Escherichia coli adapting to acetate as a sole carbon source. Bacteria grown in glucose minimal media were used as a reference. The dynamic expression levels of 3,497 genes were monitored at seven time points during this adaptation. Among the central metabolic genes, the glycolytic and glucose phosphotransferase genes were repressed as the bacteria entered stationary phase, whereas the glyoxylate pathway, TCA cycle, and gluconeogenic genes were induced. Distinct induction or repression patterns were recognized among different pathway genes. For example, the repression of glycolytic genes and the induction of gluconeogenic ones started immediately after glucose was depleted. On the other hand, the regulation of the pentose phosphate pathway genes and glyoxylate genes gradually responded to the glucose depletion or was more related to growth in acetate. When the whole genome was considered, many of the CRP, FadR, and Cra regulons were immediately responsive to the glucose depletion, whereas the $\sigma^s$, Lrp, and IHF regulons were gradually responsive to the glucose depletion. The expression profiling also provided differential regulations between isoenzymes; for example, malic enzymes A (sfcA) and B (maeB). The expression profiles of three genes were confirmed with RT-PCR.

Hepatitis E Virus Papain-Like Cysteine Protease Inhibits Type I Interferon Induction by Down-Regulating Melanoma Differentiation-Associated Gene 5

  • Kim, Eunha;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권11호
    • /
    • pp.1908-1915
    • /
    • 2018
  • Upon viral infection, the host cell recognizes the invasion through a number of pattern recognition receptors. Melanoma differentiation associated gene 5 (MDA5) and retinoic acid-inducible gene-I (RIG-I) recognize RNA molecules derived from invading viruses, activating down-stream signaling cascades, culminating in the induction of the type I interferon. On the other hand, viruses have evolved to evade type I interferon-mediated inhibition. Hepatitis E virus has been shown to encode a few antagonists of type I interferon and it is not surprising that viruses encode multiple mechanisms of viral evasion. In the present study, we demonstrated that HEV PCP strongly down-regulates MDA5-mediated activation of interferon ${\beta}$ induction in a dose-dependent manner. Interestingly, MDA5 protein expression was almost completely abolished. In addition, polyinosinic polycytidylic acid (poly(I:C))- and Sendai virus-mediated activation of type I interferon responses were similarly abrogated in the presence of HEV PCP. Furthermore, HEV PCP down-regulates several molecules that play critical roles in the induction of type I IFN expression. Taken together, these data collectively suggest that HEV-encoded PCP is a strong antagonist of type I interferon.

Proinflammatory Effects of Bacterial Lipopolysaccharide (LPS) in Rainbow Trout (Oncorhynchus mykiss) Macrophage Cells

  • Hong Suhee;Jeong Hyun Do
    • Fisheries and Aquatic Sciences
    • /
    • 제6권3호
    • /
    • pp.130-134
    • /
    • 2003
  • Proinflammatory effects of bacterial lipopolysaccharide (LPS) have been assessed by analysing the induction of two inflammatory genes, $interleukin-1\beta$ $(IL-1\beta)$ and cyclooxygenase-2 (COX-2), in rainbow trout (Oncorhynchus mykiss) macrophage cells. Production of a metabolite of arachidonic acid by COX-2, prostaglandin $E_2\;(PGE_2)$, was also analysed in macrophage cells after LPS stimulation. Northern blot analysis revealed that LPS $(5{\mu}g/mL)$ significantly upregulated $IL-1\beta$ (54 times) and COX-2 (40.7 times) gene expression in macrophage cells after 4 h stimulation. According to RT-PCR (Reverse Transcription Polymerase Chain Reaction) analysis, $IL-1\beta$ gene induction in LPS stimulated macrophage cells was started within 1h and significantly increased thereafter until 4h. Meanwhile, COX-2 gene induction by LPS was delayed in comparison with $IL-1\beta$ gene induction as a faint band was observed after 4h stimulation in head kidney macrophage cells. LPS also significantly increased $PGE_2$ production in head kidney leucocytes, presumably via activating COX-2 expression that metabolites arachidonic acid to $PGE_2$. In conclusion, it was demonstrated that LPS could induce two main inflammatory and immune related genes, $IL-1\beta$ and COX-2, and increase $PGE_2$ production in trout head kidney macrophage cells, representing a strong inflammatory activity.