• 제목/요약/키워드: Induction current

검색결과 1,584건 처리시간 0.023초

고정자 전류 스펙트럼 모니터링을 이용한 효과적인 유도전동기 회전자 고장 걸출 (Efficient Rotor Fault Detection of Induction Motors Using Stator Current Spectrum Monitoring)

  • 정춘호;우혁재;송명현;강의성;김경민
    • 한국정보통신학회논문지
    • /
    • 제6권6호
    • /
    • pp.873-878
    • /
    • 2002
  • 고정자 전류 스펙트럼(stator current spectrum)은 유도전동기의 고장 검출에 널리 사용되어왔다. 본 논문에서는 고정자 전류 스펙트럼 중에서 회전자 고장에 의해서 큰 영향을 받는 주파수 성분들로 특징벡터(feature vector)를 구성하고, 특징벡터와 기준벡터(reference vector)와의 평균 절대치 차이(mean absolute difference)를 구함으로써, 회전자 고장을 검출하는 방법을 제안한다. 제안한 방법에서는 전류 스펙트럼 중에서 추출된 매우 작은 크기(dimension)의 특징 벡터에 대한 평균 절대치 차이를 이용하기 때문에 신경회로망에 의한 고장 검출 알고리즘 둥에 비해서 훨씬 적은 계산량만으로 모터의 고장을 효율적으로 검출할 수 있다

삼상유도전동기의 결상시 전류 및 회전력특성에 관한 연구 (A Study on Current and Torque Characteristics Of Three-Phase Induction Motor in Single-Phase Operation.)

  • 유춘식;노창주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제6권1호
    • /
    • pp.25-33
    • /
    • 1982
  • The characteristics of the stator current and torque of a small three- phase squirrel cage induction motor and studied experimentally under the situation of a single-phase operation due to various causes. Through the experiments, the torque-slip and current-slip curve of single-phase circuit as well as three-phase circuit are obtained and the needed constants are determined. The stator current and torque are calculated by the current and torque equations derived by the unbalanced circuit theory. The numerical values obtained from the above methods are compared with the experimental values under the same conditions. The results of the study are summerized as follow; 1) The values computed by the unbalanced circuit theory generally come to approach the values recorded through experiments. 2) Near the rated load, speed drop is less than 1.2 per cent of the speed of three-phase induction motor and torque reduces less than 3 per cent of it of three-phase induction motor when three-phase induction motor is run under a single-phase. On the other hand, the stator current in a single-phase circuit is more than 1.9 times of it in three-phase circuit. 3) The stalling torque in a single-phase circuit is reduced to about 41 per cent of it in three-phase circuit while the corresponding slip is moved toward the synchroneous speed and the corresponding stator current is increased.

  • PDF

개선된 등가 파라미터를 이용한 인버터 구동 유도전동기의 축전류 해석에 관한 연구 (A Study on Analysis of Inverter-fed Induction Motor's Bearing Current using Improved Equivalent Ciruit Parameters)

  • 김병택;구대현;홍정표;권병일;전지훈
    • 전기학회논문지
    • /
    • 제56권4호
    • /
    • pp.683-692
    • /
    • 2007
  • An inverter driven induction motor has more superior dynamic characteristic than sine wave driven induction motor. But it has a problem with shaft voltage and bearing current in drive-motor system. This paper presents the analysis of bearing current in inverter-fed induction motor. The proposed method is based on using numerical method (FEM) to derive parasitic parameters in motor. Using the electric field analysis with FEM, the stored energy in dielectric materials of the motor can be calculated and the parasitic capacitances are obtained. Then we compared the proposed method with a conventional method in variable frequency and load conditions. From the comparision of simulation and experiment result, we confirmed that the proposed method is valid.

인덕션 방식을 이용한 평면 스테이지의 동특성 개선 (Improvement of Dynamic Characteristic of Large-Areal Planar Stage Using Induction Principle)

  • 정광석;박준규;김효준
    • 제어로봇시스템학회논문지
    • /
    • 제15권7호
    • /
    • pp.675-682
    • /
    • 2009
  • Instead of direct driving like BLDC, the induction principle is adopted as a driving one for planar stage. The stage composed of four linear induction motors put in square type is activated by two-axial forces; low-frequency attractive force and thrust force of the linear induction motors. Here, the modified vector control whose new inputs are q-axis current and dc current biased to three phase current instead of d-axis current or flux current is applied extensively to overall motion of the stage. For the developed system, the precision step test and the constant velocity test are tried to guarantee its feasibility for TFT-LCD pattern inspection. However, to exclude a discontinuity due to phase shift and minimize a force ripple synchronized with the command frequency, the initial system is revised to the antagonistic structure over the full degree of freedom. Concretely describing, the porous air bearings guide an air-gapping of the stage up and down and a pair of liner induction motors instead of single motor are activated in the opposite direction each other. The performances of the above systems are compared from trapezoid tracking test and sinusoidal test.

유도전동기 효율향상에 따른 역률 보상 콘덴서 최적 선정에 대한 연구 (A Study on the Optimum Selection of the Power Factor Compensation Condenser According to the Improved Efficiency of Induction Motor)

  • 김종겸
    • 전기학회논문지
    • /
    • 제65권7호
    • /
    • pp.1311-1315
    • /
    • 2016
  • Induction motor requires a rotating magnetic field for rotation. Current required to generate the rotating magnetic field is immediately magnetizing current. This magnetizing current is associated with the reactive power. Induction motor is always required reactive power. If reactive power is supplied only to the power supply side, the power factor is low. Therefore, it is to compensate the power factor by connecting capacitors in parallel to the motor terminal. If the capacitor current is greater than the magnetizing current of the motor, there is a possibility that the self-excitation occurs. High voltage generated by the self-excitation leads to insulation failure on the motor. So it is necessary to calculate the power factor correction capacitor capacity the most suitable to the extent that the magnetizing current does not exceed the capacitor current. In this study, we first computed the magnetization current and the reactive power of the induction motor and then calculates a limit of the maximum power factor by comparing the magnetizing current and the capacitor current installed in order to achieve the target power factor.

인터넷을 이용한 CNC 선반의 속도 센서리스 토크감시 (Speed Sensorless Torque Monitoring On CNC Lathe Using Internet)

  • 홍익준;권원태
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.467-470
    • /
    • 2002
  • Internet provides the useful method to monitor the current states of the machine tool no matter where a personnel is monitoring them. In this paper, a monitoring method of the torque of the machine tool's spindle induction motor using internet is suggested. The torque of vector controlled induction motor is estimated without speed measuring sensor. Only stator currents are measured to estimate the magnetizing current which is used to calculate flux linkage, rotor velocity and motor torque. Graphical programming is used to implement the suggested algorithm, to monitor the torque of an induction motor in real time and to make the estimated torque monitored on client computers. To solve the fluctuation problem of estimated torque caused from instantly varying rotating speed of an induction motor, the rotating speed is reconstructed based on the measured current signals. Mechanical part of the machine tool is also reconstructed using the data obtained from preliminary experiments. Torque of the spindle induction motor is well monitored on the client computers with 3% error range under various cutting conditions.

  • PDF

벡터제어 유도전동기의 최대효율 운전 (Maximum Efficiency Drive of Vector-Controlled Induction Motors)

  • 윤덕용;최규하;홍순찬;백수현;이은웅
    • 전력전자학회논문지
    • /
    • 제1권1호
    • /
    • pp.27-37
    • /
    • 1996
  • This paper proposes the control algorithm for maximum efficiency drive of PWM inverter - induction motor system with high dynamic performance. If the induction motor is driven under light load with rated magnetizing current, the Iron loss is excessively large compared with the codder loss which results in doer motor efficiency. Maximum efficiency drive of an induction motor can be achieved by controlling the magnetizing current to satisfy the optimal ratio that leads the total motor loss to be a minimum value at a given speed. The proposed control algorithm essentially uses vector control technique and adopts voltage decoupling control strategy to prevent the degradation of dynamic performance due to reduced magnetizing current. To verify the proposed method, digital simulations and experiments are carried out for a squirrel-cage induction motor with the rating of 2.2[kW].

  • PDF

점호각을 고려한 유도전동기의 소프트 기동 특성 해석 (Analysis of Soft Start-up Characteristics of the Induction Motor Considering the Firing Angle)

  • 김종겸;박영진
    • 전기학회논문지
    • /
    • 제65권6호
    • /
    • pp.1007-1012
    • /
    • 2016
  • Induction motors are used widely in driving load of a fluid, such as a pump or a fan in the industry. Induction motor has been generated the voltage drop by the occurrence of a high current during startup. In addition, high start-up current can act as a mechanical stress on the shaft of the motor. So there is need a way to reduce the starting current. Soft start method is one of the many ways to reduce the starting current. This method uses silicon-controlled rectifiers(SCRs) for varying value of the voltage applied to the motor. There is a case for fixing or changing the thyristor firing angle to adjust the magnitude of the voltage. Starting power factor of induction motor is very low compared to the normal operation. Soft starting with the firing angle fixed needs to be considered a low power factor at startup. In this study, we compared the direct start characteristics and soft start characteristics considering the low power factor at the time of start-up. It was possible to confirm that the starting current and the voltage drop is present differently according to the firing angle.

발전소 대형 입형펌프 전동기의 전류/진동신호 특성 분석 (Current and Vibration Characteristics Analysis of Induction Motors for Vertical Pumps in Power Plant)

  • 배용채;이현;김연환
    • 한국소음진동공학회논문집
    • /
    • 제16권4호
    • /
    • pp.404-413
    • /
    • 2006
  • Induction motors are the workhorse of our industry because of their versatility and robustness. The diagnosis of mechanical load and power transmission system failures is usually carried out through mechanical signals such as vibration signatures, acoustic emissions, motor speed envelope. The motor faults including mechanical rotor imbalances, broken rotor bar, bearing failure and eccentricities problems are reflected in electric, electromagnetic and mechanical quantities. The recent research has been directed toward electrical monitoring of the motor with emphasis on inspecting the stator current of the motor, The stator current spectrum has been widely used for fault detection in induction motor systems. The motor current signature analysis is the useful technique to assess machine electrical condition. This paper describes the motor condition detected by the current signatures Paralleled with vibration signatures analysis of induction motors with the roller bearing and the journal bearing type for large vertical pumps in power plant as examples to discuss for motor fault detection and diagnosis.

전류파형을 변조한 단상유도전동기구의 특성에 관한 연구 (Performances of Current-Waveform Modulated Single-Phase Induction Machine)

  • 황영문;김철우;박용규
    • 전기의세계
    • /
    • 제24권1호
    • /
    • pp.55-62
    • /
    • 1975
  • A single-phase induction motor with it's stator winding splitted into two series windings, of which the terminals of one winding is switched pulsationally by a thyristor type ON-OFF device so that the motor may operate as a pulsational shaded-pole motor, can modulate current waveforms of it's two series windings. In view of current waveform modulation method, a single-phase single-winding motor operates as a two-phase induction motor with asymmetrical axis windings where the starting torque can be obtained effectively without an auxiliary capacitor attached and it's running speed controlled by shifting phase between current waveforms differently. Equivalent circuit for analysis is modified from a double revolving field equivalent circuit of a single-phase induction motor with asymmetrical windings whose angle is 45.deg.C elet. degrees. Analysis and test results show that ON-OFF action of the pulsational shaded-pole winding has the same effect of a series capacitor, and then at heavy loads this motor operates with a small amonut of the input current than that having the fixed shaded-pole winding.

  • PDF