• Title/Summary/Keyword: Induction Motors

Search Result 746, Processing Time 0.025 seconds

Shape Design of Induction Motors for Efficiency Improvement (유도기 효율향상을 위한 회전자슬롯 형상최적화)

  • Kwak, In-Gu;Lee, Hyang-Beom;Park, Il-Han;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.929-931
    • /
    • 1993
  • The design sensitivity analysis based on the finite element method is presented for the eddy current problem with a voltage source. Since, in this problem, the complex variable is used as the state variable, new approach to the sensitivity calculation for the complex variable system is required. Its result is applied to the design of the rotor slot shape of squirrel cage induction motor. As a analysis model, only one slot pitch of rotor is analyzed by using a Periodic boundary condition. The use of this minimal modelling method leads to much saving of calculation time. The design objective is to obtain the desired slip-torque characteristic. Because the shape of rotor slot has much influence on the slip torque characteristic, the design variables are taken on the interface shape between rotor core and rotor bar. The initial shape of rotor slot is the trapezoidal type with rounding corners. The obtained final shape is quite similar to the double squirrel cage type.

  • PDF

The Study on the Characteristic Analysis of Three Phase Induction Motor For Electric Forklift Truck Using Finite Element Method (유한요소법을 이용한 전동지게차용 3상 유도전동기 특성 해석 연구)

  • Kim, Kwang-Soo;Im, Jong-Bin;Lee, Sang-Hoon;Won, Sung-Hong;Koo, Dae-Hyun;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1059-1060
    • /
    • 2007
  • In this paper analysis of the characteristics in the three phase induction motor for the electric forklift truck is researched. There are two kinds of the Finite element analysis method. First thing is time domain analysis by the time transient method. Second thing is frequency domain analysis by method which assumes applied voltage and current sinusoidal. Especially in case of the characteristic studies, electromagnetic analysis is performed about each prototype motors. The obtained results are compared and the result of the test is examined. We could know characteristics of each prototypes and verify the design program of the motor through FEM. Finally this paper shows the factors of discord results of the analysis.

  • PDF

Analysis and Measurement of the Magnetic Fields Cause by Operation of Electromotive Installations (전동력설비의 운전에 의해 발생되는 자계의 측정과 해석)

  • 이복희;길경석
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.2
    • /
    • pp.58-67
    • /
    • 1995
  • The paper describes the variation of magnetic fields caused by the operation of induction motors. The measuring system consists of the self-integrating magnetic field sensor, amplifier, and active integrator. From the calibration experiments, the frequency bandwidth of the magnetic field measuring system ranges from 20[Hz] to 300[kHz] and sensitivity is 0.234(mV/$\mu\textrm{T}$]. The magnetic fields generated under steady state and starting operations of duction motor are recorded by the proposed measuring system, and the fast Fourier transformation(FFT) of the measured data is performed to analyze the harmonic components. A single pulsed magnetic field is strongly caused by direct starting the induction motor, and its peak value is greater than 5 times as compared with the steady state value. The long transient duration and high intensity originates from the large inductance and dynamic characteristic of the induction motor, During the steady state operation of induction motor, subharmonics of magnetic field components, which depend on the pole number of induction motor, are observed. The lower order power-line harmonics can be inferred from the voltage flicker and current ripple which are derived from the torque fluctuation of induction motor. In the case of the induction motor drived by inverter, the harmonics of magnetic field are much more than those caused by direct starting method and are found generally to increase with decreasing the driving frequency.

  • PDF

A Study on Improving High-Power Induction Motor Starting (대용량 유도전동기 기동 개선에 관한 연구)

  • Son, Seok-Geum
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.2
    • /
    • pp.178-184
    • /
    • 2016
  • The motor power of the industry to use the electric energy is gradually increased. The electric motor generates a voltage drop in the starting current during startup. The starting current is started it is difficult to have an adverse effect on neighboring power systems with large motor starting when the voltage drop across the power grid. In addition to that the motor torque according to the load depending on the size of the rotation speed is changed to a motor start-up speed is important. However, the distance to the emergency generator transformers or motors from the motor capacity is smaller but short and difficult to maneuver the theory and practice of the operating characteristics of the starting characteristics of the motor used a lot of large industrial plants were measured and analyzed. Therefore, this study investigated the motor starting Analysis and interpretation for the relationship with the large motor starting torque and speed during motor starting.

Induction Motor Bearing Damage Detection Using Stator Current Monitoring (고정자전류 모니터링에 의한 유도전동기 베어링고장 검출에 관한 연구)

  • Yoon, Chung-Sup;Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.6
    • /
    • pp.36-45
    • /
    • 2005
  • This paper addresses the application of motor current spectral analysis for the detection of rolling-element bearing damage in induction machines. We set the experimental test bed. They is composed of the normal condition bearing system, the abnormal rolling-element bearing system of 2 type induction motors with shaft deflection system by external force and a hole drilled through the outer race of the shaft end bearing of the four pole test motor. We have developed the embedded distributed fault tolerant and fault diagnosis system for industrial motor. These mechanisms are based on two 32-bit DSPs and each TMS320F2407 DSP module is checking stator current The effects on the stator current spectrum are described and related frequencies are also determined. This is an important result in the formulation of a fault detection scheme that monitors the stator currents. We utilized the FFT(Fast Fourier Transform), Wavelet analysis and averaging signal pattern by inner product tool to analyze stator current components. Especially, the analyzed results by inner product clearly illustrate that the stator signature analysis can be used to identify the presence of a bearing fault.

Determination of Parameters of Equivalent Circuit Taking No-Load Losses Into Account for Single-Phase Induction Motors (단상 유도전동기의 무부하손실을 고려한 등가회로 정수의 결정)

  • Jwa, Chong-Keun;Kim, Do-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.358-363
    • /
    • 2010
  • This paper proposes a step-by-step method of determining the parameters of equivalent circuit which is considered the no load losses for the single phase induction motor which has the starting winding. This method is comprised of three steps, and the stator resistance which is measured by the method of voltage drop is treated as constant and the stator and the rotor leakage reactances are assumed to be the same in every step. The test results of no load and locked rotor test are used in the 1st and 2nd step, and the ratings of name plate of the motor are needed in the 3rd step. In the 1st step, the traditional equivalent circuit parameters are directly calculated by no load and locked rotor conditions. In the next step, five nonlinear simultaneous equations for five unknown parameters can be set up by no load and locked rotor equivalent circuits. These equations are solved by using the initial parameters obtained by the 1st step parameters. In the final step, three nonlinear simultaneous equations for rotor winding resistance, leakage reactance and no load losses component resistance can be set up by equivalent circuit under the rated operation. Three parameters are solved by using the 2nd step parameters. Thus, equivalent circuit parameters are gradually refined step by step. The validity of the proposed method is evaluated by comparing the computed values obtained by the equivalent circuit parameters with the experimental values of the load test.

A Characteristics of SPIM with Power Conversions of Auxiliary Winding (보조권선의 전력제어에 따른 단상유도전동기의 특성비교)

  • Park, Su-Kang;Seo, Kang-Sung;Baek, Hyung-Lae;Cho, Geum-Bae;Lim, Yang-Suo;Lee, Seong-Kil;Kim, Dong-Hui
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1149-1151
    • /
    • 2002
  • In this paper, an auxiliary winding driving system of single-phase induction motors is described. Starting charateristics variations are obtained by controlling the auxiliary winding voltage magnitude and phase angle, while the motor's main winding is directly connected to the local utility. A variable auxiliary winding voltage phase angle is shown to yield significant torque control, providing starting and braking torque. The analysis includes the determination of the relationship between the auxiliary winding voltage phase angle and the phase angle difference between the main and auxiliary winding current. The paper proposed for adjusting an auxiliary winding voltage magnitude and phase angle. Experimental results of motor's starting characteristics with using the DC-AMP and PWM inverter for auxiliary winding power supply are shown. The drive is tested using a dynamometer to experimentally verify the results of the theory.

  • PDF

A Measurement of Switching Surge Voltage using Adjustable Speed Drives (가변속 드라이브의 사용에 따른 스위칭 서지전압 측정)

  • Kim, Jong-Gyeum;Lee, Eun-Woong;Kim, Il-Joong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.838-840
    • /
    • 2002
  • Most adjustable-speed drives (ASDs) designed to operate 220[V] induction motors incorporate voltage-source inverters (VSIs), which create motor voltages at high switching frequencies. The motor leads used to connect an ASD to a motor can behave like transmission lines for voltage pulses, which can be reflected at the motor terminals. The resulting oscillatory transient, known as the long-lead effect, can stress and consequently degrade the stator insulation system of a motor. This paper describes the results of tests to 1) determine the correlation between peak motor voltage and the length of motor leads and 2) determine the correlation between peak motor voltage and the switching frequency of the ASD

  • PDF

Method Controlling Two or More Sets of PMSM by One Inverter on a Railway Vehicle

  • Ito, Takuma;Inaba, Hiromi;Kishine, Keiji;Nakai, Mitsuki;Ishikura, Keisuke
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.207-214
    • /
    • 2014
  • If two or more Permanent Magnet Synchronous Motors (PMSM) can be controlled by one inverter, a train can be driven by less energy than the present Induction Motor (IM) drive system. First, this paper proposes a method for simulating the movement of wheels and a vehicle to develop a control method. Next, a method is presented for controlling two or more PMSMs by one inverter.

A study on the parameter identification of induction motors (유도전동기의 매개변수 추정에 관한 연구)

  • 김규식
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.6
    • /
    • pp.1-11
    • /
    • 1996
  • The rotor flux level need be changed frequently for field weakening or power efficiency control. Motor inductances depend on rotor flux but not on machine temperature. On the other hand, rotor resistance varies greatly with the machine temperature. Motor parameters such a sinductances and rotor resistance should be known precisely in order to attain high dynamic performance of inductin motor. In this paper, efficient an dnovel identification algorithms for motor inductances and rotor resistance are presented. The rotor flux is changed. As the result, the slip frequency is varied. The identificatin algorithm for rotor resistance measures the varied slip frequency and alters the estimated rotor resistance. Then, the estimated value of rotor resistance will approach its real value. The proposed identification algorithms are computationally simple and have very small identification errors.

  • PDF