• Title/Summary/Keyword: Induction Motors

Search Result 746, Processing Time 0.024 seconds

Auto-Measurement of Induction Motor Parameters

  • Kim Kyung-Seo;Byun Sung-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.226-232
    • /
    • 2006
  • This paper presents the parameter measurement methods for high performance drive of induction motors, which are suitable for the self-commissioning function of commercial inverters. In this study, some factors that affect the accuracy of parameter measurement are examined. Measuring methods and conditions that are best fit to each parameter measurement procedure are then proposed. All the measurement procedures can be done without any auxiliary equipment, so that those can be easily adopted as self-commissioning functions of commercial inverters. To improve the measuring accuracy, least square approximation methods are adopted during the measurement procedure. The validity of the proposed methods are confirmed through experiments.

Fault Detection and Identification of Induction Motors with Current Signals Based on Dynamic Time Warping

  • Bae, Hyeon;Kim, Sung-Shin;Vachtsevanos, George
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.102-108
    • /
    • 2007
  • The issues of preventive and condition-based maintenance, online monitoring, system fault detection, diagnosis, and prognosis are of increasing importance. This study introduces a technique to detect and identify faults in induction motors. Stator currents were measured and stored by time domain. The time domain is not suitable for representing current signals, so wavelet transform is used to convert the signal; onto frequency domain. The raw signals can not show the significant feature, therefore difference values are applied. The difference values were transformed by wavelet transform and the features are extracted from the transformed signals. The dynamic time warping method was used to identify the four fault types. This study describes the results of detecting fault using wavelet analysis.

Probability theory based fault detection and diagnosis of induction motor system (확률기법을 이용한 유도전동기의 고장진단 알고리즘 연구)

  • Kim, Kwang-Su;Cho, Hyun-Cheol;Song, Chang-Hwan;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.228-229
    • /
    • 2008
  • This paper presents stochastic methodology based fault diction and diagnosis algorithm for induction motor systems. First, we construct probability distribution model from healthy motors and then probability distribution for faulty motors is recursively calculated by means of the proposed probability estimation. We measure motor current with hall sensors as system state. The estimated probability is compared to the model to generate a residue signal which is utilized for fault detection and diagnosis, that is, where a fault is occurred. We carry out real-time induction motor experiment to evaluate efficiency and reliability of the proposed approach.

  • PDF

Stability Comparison of New Simplified Speed Sensorless Vector Control Systems for Induction Motors

  • Mangindaan, Glanny M.Ch.;Tsuji, Mineo;Hamasaki, Sin-Ichi
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.126-131
    • /
    • 2014
  • This paper discusses stability of new simplified sensorless vector control systems of induction motors (IM). The simplified sensorless systems estimate the flux angle by using the output voltage of d-axis PI current controller to achieve the q-axis flux zero. Two simplified sensorless systems are studied. The difference of two systems is the presence or absence of a q-axis PI current controller. The systems stability is compared by deriving linear state equations and showing root loci and unstable regions. Furthermore, transient responses and experiment results make clear the stability of the proposed system.

Parameter Estimation for Vector Control of Induction Motors without Speed Sensors (속도센서 없는 유도전동기 백터제어 시스템의 파라메타 추정)

  • Kim, Sang-Uk;Kwon, Young-Gil;Kim, Young-Jo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2088-2090
    • /
    • 1997
  • This paper consists of the speed sensorless vector control of induction motors with the estimation of rotor resistance. In the application of variable-speed induction motor drives, if an inaccurate rotor resistance is used because the rotor resistance can change due to skin effects and temperature variables, it is difficult to achieve a collect field orientation. In this paper, to overcome these difficulties adaptive algorithm is designed for rotor resistance identification. The proposed adaptive algorithm for rotor resistance estimation in the synchronous reference frame is applied by sliding mode current controller satisfing persistent excitation(PE) condition. Adaptive flux observer is here used for the purpose of estimating rotor flux and speed in the speed sensorless scheme. Computer simulations are carried out to verify the validity of the proposed algorithm.

  • PDF

TDFE Analysis of Single-Phase Induction Motors (유한요소법을 이용한 단상유도전동기의 시간차분해석)

  • Lee, Hyang-Beom;Hahn, Song-Yop;Park, Yoon-Ser;Jeong, Seong-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.172-174
    • /
    • 1996
  • In this paper, the characteristics of single-phase induction motors is studied using TDFE(Time Domain Finite Element) analysis. The magnetic field equation from the Maxwell's equations is solved using 2-Dimensional TDFE method, and the circuit equations from the stator and rotor are solved simultaneously. The 3-D effects, which are the end-leakage reactance and the resistance of end-rings are considered in 2-D combined equations. The proposed method is applied to the commercial single-phase induction motor. The calculated waveforms of the currents shows a good agreement with the measured ones.

  • PDF

High Performance Velocity and Position Controller for Induction Motors (유도 전동기 고성능 속도 및 위치 제어기)

  • Yim, Chung-Hyuk;Kim, Chang-Hwan;Kim, Dong-Il;Kim, Sung-Kwon;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.281-284
    • /
    • 1996
  • Samsung Electronics has developed high performance velocity and position controllers for induction motors, and succeeded in mass production for the first time in Korea. Dynamic performance and final control accuracy of the controller are equivalent to those of AC servo motor controller. At present, we adopted the controller as spindle motor drive for Samsung CNC systems, and expect its wide use in industry as general purpose velocity and position controller for induction motor.

  • PDF

Speed Sensorless Vector Control of Induction Motors with the Identification of Rotor Resistance (회전자저항동정을 갖는 유도전동기의 속도센서리스 벡터제어)

  • Kim, Sang-Uk;Choi, Se-Wan;Kim, Young-Jo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.510-513
    • /
    • 1996
  • This paper consists of the speed sensorless vector control of induction motors with the estimation of rotor resistance. In the application of variable-speed induction motor drives, if an inaccurate rotor resistance is used because the rotor resistance can change due to skin effects and temperature variables, it is difficult to achieve a collect field orientation. In this paper, to overcome these difficulties adaptive algorithm is designed for rotor resistance identification at the beginning of the transient state. And an adaptive flux observer is used for the purpose of estimating rotor flux and speed in the speed sensorless scheme. Computer simulations are carried out to verity the validity of the proposed algorithm.

  • PDF

Fault Diagnosis of Induction Motors using Decision Trees (결정목을 이용한 유도전동기 결함진단)

  • Tran Van Tung;Yang Bo-Suk;Oh Myung-Suck
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.407-410
    • /
    • 2006
  • Decision tree is one of the most effective and widely used methods for building classification model. Researchers from various disciplines such as statistics, machine teaming, pattern recognition, and data mining have considered the decision tree method as an effective solution to their field problems. In this paper, an application of decision tree method to classify the faults of induction motors is proposed. The original data from experiment is dealt with feature calculation to get the useful information as attributes. These data are then assigned the classes which are based on our experience before becoming data inputs for decision tree. The total 9 classes are defined. An implementation of decision tree written in Matlab is used for four data sets with good performance results

  • PDF