• Title/Summary/Keyword: Inductance ratio

Search Result 128, Processing Time 0.025 seconds

Design of Magnetic Circuit of Line-start Permanent Magnet Synchronous Motor to Develop the Characteristics at the Steady State (정상상태 특성 개선을 위한 단상 영구자석형 동기기의 자기회로 설계)

  • Oh, Young-Jin;Nam, Hyuk;Jung, Seung-Kyu;Hong, Jung-Pyo;Jung, Tae-Uk;Baek, Seung-Myun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.6
    • /
    • pp.254-261
    • /
    • 2003
  • This study investigates magnetic circuit design of the Single-phase Line-start Permanent Magnet Synchronous Motor (LSPM) to develop the characteristics in steady state. In this paper, the saliency ratio, that is the ratio of q-axial inductance to d-axial inductance, and the inductance difference between q-axial inductance and d-axial inductance are increased. Design factor is selected permanent magnet position and rotor diameter. The analysis method of the synchronous motor on d-/q- axis coordinates is used for the positive component and the equivalent circuit of the induction motor is applied for the negative component analysis. Back-emf and d-q- axial inductance is analyzed by using 2 dimensional Finite Element Method (FEM). Characteristic analysis results with variation of design factor are reflected magnetic circuit design of LSPM. The characteristics of design model are compared with the characteristic of initial model.

Energy and Inductance of a HTS Magnet with Various Aspect Ratios (마그넷 형상에 따른 고온초전도 마그넷의 에너지와 인덕턴스)

  • Kang, Myung-Hun;Kim, Young-Min;Ku, Dae-Kwan;Paik, Kyoung-Ho;Cha, Guee-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1134-1139
    • /
    • 2011
  • When the aspect ratio of a magnet varies, the magnetic field in the magnet also varies. The critical current of a tape-shaped HTS wire varies with the direction and magnitude of applied magnetic field. Consequently when the aspect ration of a HTS magnet varies, the critical current of a HTS magnet varies. This paper shows the relation between the aspect ratio of a magnet and the energy and inductance of a HTS magnet. The critical current is also shown at various aspect ratio of the magnet. The length of the HTS wire, inner diameter of the magnet, and number of pancake are chosen to be variables which varies the shape of the magnet. For a HTS magnet consisting of pancake windings, calculation results show the number of pancake windings are the prime factor which varied the energy and inductance of the magnet. The inner diameter of the magnet varies the energy and inductance of the magnet a little.

Analysis on Fault Current Limiting Characteristics According to Peak Current Limiting Setting of a Flux-Lock Type SFCL with Peak Current Limiting Function (피크전류제한 설정에 따른 피크전류제한 기능을 갖는 자속구속형 초전도한류기의 고장전류제한 특성 분석)

  • Ko, Seok-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.12
    • /
    • pp.68-73
    • /
    • 2012
  • In this paper, the fault current limiting characteristics of a flux-lock type superconducting fault current limiter (SFCL) with peak current limiting function were analyzed through its short-circuit tests. The setting condition for the peak current limiting operation was derived from its electrical equivalent circuit, which was dependent on the inductance ratio between the third coil and the first coil. Through the analysis on the short-circuit tests for the flux-lock type SFCLs with the different inductance ratio between the third coil and the first coil, the setting value for the peak current limiting operation of the flux-lock type SFCL with peak current limiting function could be confirmed to be adjusted with the variation of the inductance ratio between the third coil and the first coil.

Rotor Design of a Segmented Type Synchronous Reluctance Motor to Improve Torque and Power Factor (단편형 동기 릴럭턴스 전동기의 토크 및 열률 개선을 위한 회전자 설계)

  • Jang, Seok-Myeong;Park, Byeong-Im;Lee, Seong-Ho;Lee, Jung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.6
    • /
    • pp.263-272
    • /
    • 2001
  • The paper presents the design of a segmented type synchronous reluctance motor(SynRM) to increase its torque and power factor. The main feature of a segmented type synchronous reluctance motor is the flux barrier. Thus, the design process to find optimum value of various geometric parameters including flux barrier will be explained. Optimum value of each parameter is found where the d, q inductance difference and saliency ratio are maximized because these inductance characteristics are related to torque and power factor. Finite Element Analysis will be used to simulate motor characteristics. Analysis results of redesigned SynRM show higher saliency ratio over 10 and improved value of maximum power factor.

  • PDF

Output Characteristics of Parallel or Serially Connected Helical Magneto-Cumulative Generators (병렬 또는 직렬로 결합한 나선형 자장압축발전기의 출력특성 분석)

  • Kuk Jeong-Hyeon;Lee Heung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.11
    • /
    • pp.647-657
    • /
    • 2004
  • Helical magneto-cumulative generator(HMCG)s are very useful devices in suppling pulsed high current to inductance loads. To apply fast high voltage pulses to high impedance loads, high current outputs of HMCGs are required to be conditioned to higher voltages by using various pulse components such as opening/closing switches and pulse transformer. In this paper, stepping with the trends of requirements for ever-increasing energy in pulsed power applications coupling methods is investigated to obtain higher output energy by connecting several HMCGs in series or parallel way. The coil dimension of HMCGs used in series or parallel connections was 50 mm in diameter and 150 mm in length. The coil was fabricated by using enamel-coated copper wire of 1 mm in diameter. The highest energy amplification ratio and peak voltage of load were achieved from the serially connected four-barrel HMCG system. They were 68 and 34 kV, respectively, when the initial energy of 0.36 kJ was supplied into that system with the load of 0.4 μH. Within the tested range of inductance ratio, energy amplification ratio was found to be highly dependent on the inductance ratio of serial- and parallel-connected HMCG systems to load, which to be optimal around 500 was turned out. The experimental results showed that the output energy and voltage of load are controlled by connecting HMCGs in series or parallel.

IPMSM Design for Sensorless Control Considering Magnetic Neutral Point Shift According to Magnetic Saturation

  • Choi, JaeWan;Seol, Hyun-Soo;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.752-760
    • /
    • 2018
  • In this paper, interior permanent magnet synchronous motor (IPMSM) design for sensorless drive, considering magnetic neutral point shift according to magnetic saturation, has been proposed. Sensorless control was divided into a method based on inductance and a method based on back induced voltage. Because induced voltage is very small at zero or low speed, error in rotor initial position estimation may occur. Using the ratio of saliency addresses this problem. When using high-frequency injections at low speed, the rotor's initial position is estimated at the smallest portion of the inductance. IPMSM has the minimum inductance at the d-axis. However, if magnetic saturation leads to magnetic neutral point variation, following the load current change, there is a change in the minimum point of inductance. In this case, it can lead to failure of initial rotor position estimation. As a result, it is essential that the blocking design has an inductance minimum point shift. As such, in this study, an IPMSM design method, by blocking magnetic neutral point change, has been proposed. After determining the inductance profile based on the finite element analysis (FEA), the results of proposed method were verified.

Variance of Initial Fault Current Limiting Instant in Flux-lock Type SFCL (자속구속형 전류제한기의 초기 사고전류 제한시점 변화)

  • Park, Chung-Ryul;Lim, Sung-Hun;Park, Hyoung-Min;Choi, Hyo-Sang;Han, Byoung-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.3
    • /
    • pp.269-275
    • /
    • 2005
  • A flux lock-type SFCL consists of two coils which are wound in parallel each other through an iron core, and a HTSC thin film connects in series with coil 2. The operation of the flux-lock type SFCL can be divided into the subtractive polarity winding and the additive polarity winding operations according to the winding directions between coil 1, coil 2. When a fault occurs, the fault current in the HTS thin film exceeds the critical current so that resistance is generated in the HTS film, and thereby the fault current is limited by an instant rise in the impedance of the flux-lock type SFCL. We investigated he variances of initial fault current limiting instant according to the ratio of inductance of coil 1 and coil 2 in the flux-lock type SFCL. It was confirmed from experiments that the initial fault current limiting instant in the subtractive polarity and additive polarity windings were faster as the ratio of coil 2' inductance for coil 1's inductance increased. The 1st peak of fault current in case of the subtractive polarity winding was higher as the ratio of coil 2's inductance for coil 1's inductance increased. On the other hand, in case of the additive polarity winding, the 1st peak of fault current was lower.

A Study on Novel Excitation Method to Reduce Acoustic Noise in SRM Drive (소음저감을 위한 SRM 드라이브의 새로운 여자방식에 관한 연구)

  • Mun, Jae-Won;O, Seok-Gyu;An, Jin-U;Hwang, Yeong-Mun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.6
    • /
    • pp.287-293
    • /
    • 1999
  • A new excitation method of switched reluctance motor drive is described in this paper. This excitation method produces reluctance torque by mutual action between two phases as well as conventional self reluctance torque due to two phase excitation at a time. In other words, the change of self inductance and mutual inductance are used to produce torque. This paper suggests the operational principle, the mechanism of torque product of switched reluctance motor with two phase excitation. The acoustic noise characteristics of two phase excitation method are described against that of conventional excitation method. The energy conversion ratio is increased because the next phase is excited following one phase excited at the two phase excitation method. Acoustic noise is lower than that of conventional SRM because one of the next two phase is excited already when torque develope.

  • PDF

Design and Simulation Technologies of Flat Transformer with High Power Current (대전류 출력형 Flat Transformer 설계 및 해석 기술)

  • Han, Se-Won;Cho, Han-Goo;Woo, Bung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.15-17
    • /
    • 2002
  • Leakage inductance and temperature rise are two of the more impotent problems facing the magnetic core technology of today's high frequency transformers. Excessive leakage inductance increases the stress on the switching transistors and limits the duty-cycle, and excessive temperature rise can lead the design limitation of high frequency transformer with high current. The flat transformer technology provides a very good solution to the problems of leakage inductance and thermal management for high frequency power. The critical magnetic components and windings are optimized and packaged within a completely assembled module. The turns ratio in a flat transformer is determined as the product of the number of elements or modules times the number of primary turns. The leakage inductance increase proportionately to the number of elements, but since it is reduced as the square of the turns, the net reduction can be very significant. The flat transformer modules use cores which have no gap. This eliminates fringing fluxes and stray flux outside of the core. The secondary windings are formed of flat metal and are bonded to the inside surface of the core. The secondary winding thus surrounds the primary winding, so nearly all of the flux is captured.

  • PDF

Design of Multi-winding Inductor for Minimum Inductor Current Ripple Using Optimized Coupling Factor

  • Kang, Taewon;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.231-232
    • /
    • 2016
  • This paper investigates the design of multi-winding coupled inductor for minimum inductor current ripple. Based on the general circuit model of coupled inductor together with the operating principles of dc-dc converter, the relationship between the ripple size of inductor current and the coupling factor is derived under the different duty ratio. The optimal coupling factor of n-phase multi-winding coupled inductor which corresponds to a minimum inductor ripple current becomes -(1/n-1), i.e. a complete inverse coupling without leakage inductance, as the duty ratio of steady-state operating point approaches 1/n, 2/n, ${\cdots}$ or (n-1)/n. In an opposite manner, the optimal coupling factor value of zero, i.e. zero mutual inductance, is required when the duty ratio of steady-state operating point approaches either zero or one. Therefore, coupled inductors having optimal coupling factor can minimize the ripple current of inductor and inductor size.

  • PDF