• 제목/요약/키워드: Inductance Error

검색결과 68건 처리시간 0.021초

RLC 연결선의 축소모형을 이용한 지연시간 계산방법 (A Delay Estimation Method using Reduced Model of RLC Interconnects)

  • 정문성;김기영;김석윤
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권8호
    • /
    • pp.350-354
    • /
    • 2005
  • This paper proposes a new method for delay time calculation in RLC interconnects. This method is simple, but precise. The proposed method can calculate delay time of RLC interconnects by simple numerical formula calculation without complex moment calculation using reduced model in RLC interconnects. The results using the proposed method for RLC circuits show that average relative error is within $10\%$ in comparison with HSPICE simulation results.

영구자석 동기 전동기의 제정수 오차가 센서리스 운전에 미치는 영향 (Effects of Parameter Errors on Sensorless Operation of PMSM)

  • 박용순;설승기;지준근;박영재;이동환
    • 전력전자학회논문지
    • /
    • 제16권1호
    • /
    • pp.71-78
    • /
    • 2011
  • 본 논문에서는 영구자석 동기 전동기의 센서리스 운전에 있어, 제어에 사용되는 제정수의 오차가 각도 추정 성능에 미치는 영향을 분석하였다. 회전 자속의 위치를 추정하는데 사용되는 위치 오차 정보를 부호 요인과 이득 요인으로 나누어, 그 중에 각도 추정의 편차를 초래하는 부호 요인을 중심으로 제정수 오차가 각도 추정 성능에 미치는 영향을 분석하였다. 본 논문에서는 센서리스 제어에 사용되는 저항과 인덕턴스의 오차로 표현되는 각도 추정 편차의 함수를 수식적으로 도출하였고, 모의실험 및 실험을 통해 도출된 수식의 타당성을 검증하였다.

전압변성기용 부담특성 정밀분석용 자동평가시스템의 개발 (Development of an Automatic Evaluation System for the Precision Analysis of Potential Transformer Burden Characteristics)

  • 권성원;김문석;정재갑;이성하;김명수
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권10호
    • /
    • pp.457-464
    • /
    • 2005
  • Both ratio error and phase angle error in potential transformer(PT) are critically affected by used burden, connected in parallel to the secondary terminal of the PT. Thus precise measurement of burden value is very important for the evaluation of PT An automatic measurement system has been developed for the measurement of burden value and power factor of a burden. The ac voltage, current and power of the burden are measured precisely, and the burden value and power factor were calculated from these measured values. The resistance and inductance values of the tested burden are also calculated. The overall measurement uncertainties are calculated and reported with the burden value and power factor. The best measurement uncertainty for the burden measurement with the developed automatic measurement system was estimated to be 0.5 $\%$.

벡터제어 유도전동기의 모델추종 견실제어기 설계 (The Model-Following Robust Controller Design for the Vector-Controlled Induction Motor)

  • Chi Hwan Lee
    • 전자공학회논문지B
    • /
    • 제30B권11호
    • /
    • pp.93-101
    • /
    • 1993
  • The transfer function of vector-controlled induction motor is represented along with both unstructured and structured uncertainty such as the error of rotor time constant and current ripple. The low-pass-filter behavior of a magnetizing inductance gets rid of unstructured uncertainty in the transfer function. The robust controller to compensate variation of the transfer function is designed using simple P-I linear controllers. The coefficients of speed PI controller are determined from an overshoot and a rising time of system and the coefficients of model-following PI controller are obtained using the solution of Riccati equation of LQR control in the state space equation of the error system. Experimental results with the DSP-based model-following robust controller are shown a good robustness against the structured uncertainty of the motor.

  • PDF

Design Optimization of Hybrid-Integrated 20-Gb/s Optical Receivers

  • Jung, Hyun-Yong;Youn, Jin-Sung;Choi, Woo-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권4호
    • /
    • pp.443-450
    • /
    • 2014
  • This paper presents a 20-Gb/s optical receiver circuit fabricated with standard 65-nm CMOS technology. Our receiver circuits are designed with consideration for parasitic inductance and capacitance due to bonding wires connecting the photodetector and the circuit realized separately. Such parasitic inductance and capacitance usually disturb the high-speed performance but, with careful circuit design, we achieve optimized wide and flat response. The receiver circuit is composed of a transimpedance amplifier (TIA) with a DC-balancing buffer, a post amplifier (PA), and an output buffer. The TIA is designed in the shunt-feedback configuration with inductive peaking. The PA is composed of a 6-stage differential amplifier having interleaved active feedback. The receiver circuit is mounted on a FR4 PCB and wire-bonded to an equivalent circuit that emulates a photodetector. The measured transimpedance gain and 3-dB bandwidth of our optical receiver circuit is 84 $dB{\Omega}$ and 12 GHz, respectively. 20-Gb/s $2^{31}-1$ electrical pseudo-random bit sequence data are successfully received with the bit-error rate less than $10^{-12}$. The receiver circuit has chip area of $0.5mm{\times}0.44mm$ and it consumes excluding the output buffer 84 mW with 1.2-V supply voltage.

An Approach for Identifying the Temperature of Inductance Motors by Estimating the Rotor Slot Harmonic Based on Model Predictive Control

  • Wang, Liguo;Jiang, Qingyue;Zhang, Chaoyu;Jin, Dongxin;Deng, Hui
    • Journal of Power Electronics
    • /
    • 제17권3호
    • /
    • pp.695-703
    • /
    • 2017
  • In order to satisfy the urgent requirements for the overheating protection of induction motors, an approach that can be used to identify motor temperature has been proposed based on the rotor slots harmonic (RSH) in this paper. One method to accomplish this is to improve the calculation efficiency of the RSH by predicting the stator winding distribution harmonic order by analyzing the harmonics spectrum. Another approach is to increase the identification accuracy of the RSH by suppressing the influence of voltage flashes or current surges during temperature estimation based on model predictive control (MPC). First, an analytical expression of the stator inductance is extracted from a steady-state positive sequence motor equivalent circuit model developed from the rotor flux field orientation. Then a procedure that applies MPC for reducing the identification error of the rotor temperature caused by voltage sag or swell of the power system is given. Due to this work, the efficiency and accuracy of the RSH have been significantly improved and validated our experiments. This work can serves as a reference for the on-line temperature monitoring and overheating protection of an induction motor.

High Performance Current Sensing Circuit for Current-Mode DC-DC Buck Converter

  • Jin, Hai-Feng;Piao, Hua-Lan;Cui, Zhi-Yuan;Kim, Nam-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권1호
    • /
    • pp.24-28
    • /
    • 2010
  • A simulation study of a current-mode direct current (DC)-DC buck converter is presented in this paper. The converter, with a fully integrated power module, is implemented by using sense method metal-oxide-semiconductor field-effect transistor (MOSFET) and bipolar complementary metal-oxide-semiconductor (BiCMOS) technology. When the MOSFET is used in a current sensor, the sensed inductor current with an internal ramp signal can be used for feedback control. In addition, the BiCMOS technology is applied in the converter for an accurate current sensing and a low power consumption. The DC-DC converter is designed using the standard $0.35\;{\mu}m$ CMOS process. An off-chip LC filter is designed with an inductance of 1 mH and a capacitance of 12.5 nF. The simulation results show that the error between the sensing signal and the inductor current can be controlled to be within 3%. The characteristics of the error amplification and output ripple are much improved, as compared to converters using conventional CMOS circuits.

FFT-Based Position Estimation in Switched Reluctance Motor Drives

  • Ha, Keunsoo;Kim, Jaehyuck;Choi, Jang Young
    • Journal of Magnetics
    • /
    • 제19권1호
    • /
    • pp.90-100
    • /
    • 2014
  • Position estimation that uses only active phase voltage and current is presented, to perform high accuracy position sensorless control of a SRM drive. By extracting the amplitude of the first switching harmonic terms of phase voltage and current for a PWM period through Fast Fourier Transform (FFT), the flux-linkage and position are estimated without external hardware circuitry, such as a modulator and demodulator, which result in increased cost, as well as large position estimation error, produced when the motional back EMF is ignored near zero speed. A two-phase SRM drive system, consisting of an asymmetrical converter and a conventional closed-loop PI current controller, is utilized to validate the performance of the proposed position estimation scheme in comprehensive operating conditions. It is shown that the estimated values very closely track the actual values, in dynamic simulations and experiments.

Off-Line Parameter Identification of Permanent Magnet Synchronous Motor Using a Goertzel Algorithm

  • Yoon, Jae-Seung;Lee, Kyoung-Gu;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2262-2270
    • /
    • 2015
  • Generally, internal parameters of the motors and generators can be divided to the resistance and inductance components. They can become a cause of the changing internal parameters because they have sensitive characteristics due to external conditions. The changed parameters can generate the outputs which include error values from the speed and current controllers. Also, it can bring the temperature increase and mechanical damage to the system. Therefore, internal parameters of the motors and generators need to obtain their values according to the external conditions because it can prevent the mechanical damage caused by the changed parameters. In this paper, the off-line parameter identification method is verified using the Goertzel algorithm. The motor used in the simulation and experiments is an interior permanent magnet synchronous motor (IPMSM), and the proposed algorithm is verified by the simulation and experimental results.

BLDC 전동기의 전류맥동 보상을 위한 전류추정기 설계 (Design of current estimator for reducing of current ripple in BLDC motor)

  • 김명동;오태석;김일환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.339-341
    • /
    • 2006
  • This paper presents a new method on controller design of brushless dc motors. In such drives the current ripples are generated by motor inductance in stator windings and the back EMF. To suppress the current ripples the current controller is generally used. To minimize the size and the cost of the drives it is desirable to control motors without the current controller and the current sensing circuits. To estimate the motor current it is modeled by a neural network that is configured as an output-error dynamic system. The identified model is essentially a one step ahead prediction structure in which fast inputs and outputs are used to calculate the current output. Using the model, effective estimator to compensate the effects of disturbance has been designed. The effectiveness of the proposed current estimator is verified through experiments.

  • PDF