• Title/Summary/Keyword: Inducible transgenics

Search Result 2, Processing Time 0.018 seconds

Cell-intrinsic signals that regulate adult neurogenesis in vivo: insights from inducible approaches

  • Johnson, Madeleine A.;Ables, Jessica L.;Eisch, Amelia J.
    • BMB Reports
    • /
    • v.42 no.5
    • /
    • pp.245-259
    • /
    • 2009
  • The process by which adult neural stem cells generate new and functionally integrated neurons in the adult mammalian brain has been intensely studied, but much more remains to be discovered. It is known that neural progenitors progress through distinct stages to become mature neurons, and this progression is tightly controlled by cell-cell interactions and signals in the neurogenic niche. However, less is known about the cell-intrinsic signaling required for proper progression through stages of adult neurogenesis. Techniques have recently been developed to manipulate genes specifically in adult neural stem cells and progenitors in vivo, such as the use of inducible transgenic mice and viral-mediated gene transduction. A critical mass of publications utilizing these techniques has been reached, making it timely to review which molecules are now known to play a cell-intrinsic role in regulating adult neurogenesis in vivo. By drawing attention to these isolated molecules (e.g. Notch), we hope to stimulate a broad effort to understand the complex and compelling cascades of intrinsic signaling molecules important to adult neurogenesis. Understanding this process opens the possibility of understanding brain functions subserved by neurogenesis, such as memory, and also of harnessing neural stem cells for repair of the diseased and injured brain.

Augmentation of Thermotolerance in Primary Skin Fibroblasts from a Transgenic Pig Overexpressing the Porcine HSP70.2

  • Chen, Ming-Yu;Tu, Ching-Fu;Huang, San-Yuan;Lin, Jyh-Hung;Tzang, Bor-Show;Hseu, Tzong-Hsiung;Lee, Wen-Chuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.1
    • /
    • pp.107-112
    • /
    • 2005
  • A high environmental temperature affects the economic performance of pigs. Heat shock protein 70 (HSP70) has been reported to participate importantly in thermotolerance. This study aims to produce transgenic pigs overexpressing porcine HSP70.2, the highly inducible one of HSP70 members, and to prove the cellular thermotolerance in the primary fibroblasts from the transgenics. A recombinant plasmid in which the sequence that encodes the porcine HSP70.2 gene is fused to green fluorescence protein (GFP) was constructed under the control of cytomegalovirus (CMV) enhancer and promoter. Two transgenic pigs were produced by microinjecting pCMV-HSP70-GFP DNA into the pronucleus of fertilized eggs. Immunoblot assay revealed the varied overexpression level (6.4% and 1.4%) of HSP70-GFP in transgenic pigs. After heating at $45^{\circ}C$ for 3 h, the survival rate (78.1%) of the primary fibroblast cells from the highly expressing transgenic pig exceeded that from the non-transgenic pig (62.9%). This result showed that primary fibroblasts overexpressing HSP70-GFP confer cell thermotolerance. We suggest that transgenic pigs overexpressing HSP70 might improve their thermotolerance in summer and therefore reduce the economic loss in animal production.