• Title/Summary/Keyword: Inducible nitric oxide

Search Result 1,202, Processing Time 0.027 seconds

Anti-Inflammatory Effect of Chondrus nipponicus Yendo Ethanol Extract on Lipopolysaccharide-Induced Inflammatory Responses in RAW 264.7 Cells (LPS로 유도된 RAW 264.7 세포에 대한 가락진두발 에탄올 추출물의 항염증 효과)

  • Kim, Min-Ji;Bae, Nan-Yong;Kim, Koth-Bong-Woo-Ri;Park, Ji-Hye;Park, Sun-Hee;Jang, Mi-Ran;Ahn, Dong-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.2
    • /
    • pp.194-201
    • /
    • 2016
  • The anti-inflammatory activity of ethanol extract from Chondrus nipponicus Yendo (CNYEE) was investigated by measuring production of a lipopolysaccharide-induced inflammatory response mediator. CNYEE had no cytotoxic effects on proliferation of macrophages compared to the control. CNYEE significantly inhibited (over 50%) NO production at $50{\mu}g/mL$, with inhibitory effects on expression levels of cytokines such as interleukin (IL)-6, tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), and IL-$1{\beta}$. In particular, IL-6 inhibitory activity of CNYEE was higher than 70% at $100{\mu}g/mL$. CNYEE also reduced protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor (NF)-${\kappa}B$ in a dose-dependent manner. CNYEE also significantly reduced phosphorylation of p38, extracellular signal-regulated kinase, and c-Jun N-terminal kinase. Therefore, these results suggest that CNYEE may have anti-inflammatory effects by modulating the NF-${\kappa}B$ and mitogen-activated protein kinases signaling pathways and may be used as an anti-inflammatory therapeutic material.

Immunomodulatory effect of bee pollen extract in macrophage cells (꿀벌 꽃가루 열수 추출물의 큰포식세포 면역활성 효과)

  • Kim, Yi-Eun;Cho, Eun-Ji;Byun, Eui-Hong
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.437-443
    • /
    • 2018
  • Activation of macrophages plays an important role in the host-immune system. In this study, we investigated the functional roles and related signaling mechanism of hot-water extracts of bee pollen (BPW) in RAW 264.7 macrophages. Since BPW did not exert cytotoxicity at concentrations ranging from 62.5 to $250{\mu}g/mL$ in macrophage cells, a concentration of $250{\mu}g/mL$ was used as the maximum dose of BPW throughout subsequent experiments. BPW increased inducible nitric oxide synthase-mediated nitric oxide production in a concentration-dependent manner. Additionally, BPW was found to induce macrophage activation by augmenting the expression of cell surface molecules (cluster of differentiation; CD80/86, and major histocompatibility complex; MHC class I/II) and production of pro-inflammatory cytokines (tumor necrosis $factor-{\alpha}$, interleukin-6, and $IL-1{\beta}$) through mitogen-activated protein kinase and nuclear $factor-{\kappa}B$ signaling pathways in RAW 264.7 macrophages. Taken together, our results indicate that BPW could potentially be used as an immunomodulatory agent.

Anti-oxidant and Anti-inflammatory Activities of Barley Sprout Extract (보리싹 추출물의 항산화 및 항염증 활성)

  • Eun, Cheong-Su;Hwang, Eun-Young;Lee, Syng-Ook;Yang, Seun-Ah;Yu, Mi-Hee
    • Journal of Life Science
    • /
    • v.26 no.5
    • /
    • pp.537-544
    • /
    • 2016
  • Barley (Hardeum vulgare L.) sprout has received much attention in recent years as a functional food in many countries, especially in Korea and Japan. It has been reported that barley sprouts are comprised of 52.6% polysaccharides, 34.1% proteins, and 4.97% fats, along with a variety of vitamins, minerals, and polyphenols. The purpose of this study was to assess the anti-oxidant and anti-inflammatory activities of the ethanol extracts of barley sprouts. We examined the inhibitory effect of barley sprout extracts (BSE) on inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, and nitric oxide (NO), prostaglandin E2 (PGE2) and cytokine production in lipopolysaccharide (LPS)-stimulated RAW 264.7 mouse macrophage cells. BSE contains high amounts of phenolics and flavonoids and exhibits potent anti-oxidative activity, as depicted by the DPPH radical-scavenging experiment. The concentration of total phenols was 17.55 μg/ml, and flavonoids, 13.98 μg/ml. We also investigated the anti-inflammatory activities of BSE in LPS-stimulated RAW 264.7 cells. Tumor necrosis factor-alpha and PGE2 production, which had increased as a result of treatment with LPS, were significantly inhibited by BSE in a dose-dependent manner. BSE also significantly suppressed LPS-induced production of NO, and this was accompanied by a decrease in the expression of the iNOS and COX-2 proteins. These results indicate that barley sprouts may be a highly valuable natural product owing to its high-quality functional components as well as its anti-oxidant and anti-inflammatory activities.

Anti-Inflammatory Effect of Licochalcone E, a Constituent of Licorice, on Lipopolysaccharide-Induced Inflammatory Responses in Murine Macrophages (Licochalcone E의 항염증 효과와 그 기전에 대한 연구)

  • Park, Geun-Mook;Jun, Jong-Gab;Kim, Jin-Kyung
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.656-663
    • /
    • 2011
  • Licochalcone, a major phenolic constituent of the licorice species Glycyrrhiza inflata, a constituent of licorice, exhibits various biological properties, including chemopreventive-, antibacterial-, and anti-spasmodic activities. Recently, Licochalcone E (LicE) was isolated from the roots of Glycyrrhiza inflate, however its biological functions have not been fully examined. In the present study, we investigated the ability of LicE to regulate inflammation reactions in macrophages. Our in vitro experiments using murine macrophages, RAW264.7 cells, showed that LicE suppressed not only nitric oxide (NO) and prostaglandin $E_2$ generation, but also the expression of inducible NO synthase and cyclooxygenase-2 induced by lipopolysaccharide (LPS). Similarly, LicE inhibited the release of proinflammatory cytokines induced by LPS in RAW264.7 cells, including tumor necrosis factor-${\alpha}$ and interleukin-6. The underlying mechanism of LicE on anti-inflammatory action correlated with down-regulation of the nuclear factor-${\kappa}$B. Our data collectively indicate that LicE inhibited the production of several inflammatory mediators and might be used in the treatment of various inflammatory diseases.

Bioconverted Jeju Hallabong tangor (Citrus kiyomi × ponkan) peel extracts by cytolase enhance antioxidant and anti-inflammatory capacity in RAW 264.7 cells

  • Chang, Yun-Hee;Seo, Jieun;Song, Eunju;Choi, Hyuk-Joon;Shim, Eugene;Lee, Okhee;Hwang, Jinah
    • Nutrition Research and Practice
    • /
    • v.10 no.2
    • /
    • pp.131-138
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Citrus and its peels have been used in Asian folk medicine due to abundant flavonoids and usage of citrus peels, which are byproducts from juice and/or jam processing, may be a good strategy. Therefore, the aim of this study was to examine antioxidant and anti-inflammatory effects of bioconversion of Jeju Hallabong tangor (Citrus kiyomi ${\times}$ ponkan; CKP) peels with cytolase (CKP-C) in RAW 264.7 cells. MATERIALS/METHODS: Glycosides of CKP were converted into aglycosides with cytolase treatment. RAW 264.7 cells were pre-treated with 0, 100, or $200{\mu}g/ml$ of citrus peel extracts for 4 h, followed by stimulation with $1{\mu}g/ml$ lipopolysaccharide (LPS) for 8 h. Cell viability, DPPH radical scavenging activity, nitric oxide (NO), and prostagladin $E_2$ ($PGE_2$) production were examined. Real time-PCR and western immunoblotting assay were performed for detection of mRNA and/or protein expression of pro-inflammatory mediators and cytokines, respectively. RESULTS: HPLC analysis showed that treatment of CKP with cytolase resulted in decreased flavanone rutinoside forms (narirutin and hesperidin) and increased flavanone aglycoside forms (naringenin and hesperetin). DPPH scavenging activities were observed in a dose-dependent manner for all of the citrus peel extracts and CKP-C was more potent than intact CKP. All of the citrus peel extracts decreased NO production by inducible nitric oxide synthase (iNOS) activity and $PGE_2$ production by COX-2. Higher dose of CKP and all CKP-C groups significantly decreased mRNA and protein expression of LPS-stimulated iNOS. Only $200{\mu}g/ml$ of CKP-C markedly decreased mRNA and protein expression of cyclooxygenase-2 in LPS-stimulated RAW 264.7 cells. Both 100 and $200{\mu}g/ml$ of CKP-C notably inhibited mRNA levels of $interleukin-1{\beta}$ ($IL-1{\beta}$) and IL-6, whereas $200{\mu}g/ml$ CKP-C significantly inhibited mRNA levels of $TNF-{\alpha}$. CONCLUSIONS: This result suggests that bioconversion of citrus peels with cytolase may enrich aglycoside flavanones of citrus peels and provide more potent functional food materials for prevention of chronic diseases attributable to oxidation and inflammation by increasing radical scavenging activity and suppressing pro-inflammatory mediators and cytokines.

Anti-inflammatory activities of Scolopendra subspinipes mutilans in RAW 264.7 cells (RAW 264.7 세포에서 왕지네 추출물의 항염 활성)

  • Park, Jae Hyeon;Lee, Sun Ryung
    • Journal of Nutrition and Health
    • /
    • v.51 no.4
    • /
    • pp.323-329
    • /
    • 2018
  • Purpose: The dried body of Scolopendra subspinipes mutilans has long been used as a traditional Korean medicinal food, but little is known about its mechanisms of action. In this study, we investigated the anti-inflammatory activities of Scolopendra subspinipes mutilans and possible mechanisms in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Methods: Cytotoxicity of Scolopendra subspinipes mutilans extract (SSME) was measured by MTT assay, anti-inflammatory activities were analyzed by nitric oxide (NO) production, the expression of inducible NO synthase (iNOS) and the mRNA level of pro-inflammatory cytokines such as $interleukin-1{\beta}$ ($IL-1{\beta}$) and interleukin-6 (IL-6). Nuclear translocation of nuclear factor-kappa B ($NF-{\kappa}B$) p65 subunit and degradation of inhibitory kappa B ($I{\kappa}B$) were examined by western blot. Results: SSME inhibited LPS-induced NO production and iNOS expression without cytotoxicity. Up-regulation of LPS-induced pro-inflammatory cytokines, $IL-1{\beta}$ and IL-6 was dose dependently attenuated by SSME. Exposure of pyrrolidine dithiocarbamate, an $NF-{\kappa}B$ specific inhibitor, accelerated the inhibitory effects of SSME on NO production and iNOS expression in LPS-stimulated cells. Moreover, translocation of $NF-{\kappa}B$ from the cytosol to the nucleus and degradation of $I{\kappa}B$ were decreased by treatment with SSME in LPS-induced cells. Conclusion: These results suggest that the SSME might have the inhibitory effects on inflammation, partly through inhibition of the $NF-{\kappa}B$ signaling pathway.

Inhibition of LPS Induced iNOS, COX-2 and Cytokines Expression by $Genistein-4'-O-{\alpha}-L-Rhamnopyranosyl-(1-2)-{\beta}-D-Glucopyranoside$ through the $NF-{\kappa}B$ Inactivation in RAW 264.7 Cells ($Genistein-4'-O-{\alpha}-L-rhamnopyranosyl-(1-2)-{\beta}-D-glucopyranoside$의 RAW 264.7 세포에서 $NF-{\kappa}B$ 불활성화를 통한 LPS에 의해 유도되는 iNOS, COX-2 그리고 cytokine들의 발현 저해효과)

  • Park, Seung-Jae;Kim, Ji-Yeon;Jang, Young-Pyo;Cho, Young-Wuk;Ahn, Eun-Mi;Baek, Nam-In;Lee, Kyung-Tae
    • Korean Journal of Pharmacognosy
    • /
    • v.38 no.4
    • /
    • pp.339-348
    • /
    • 2007
  • This study were designed to evaluate the anti-inflammatory effects of $genistein-4'-O-{\alpha}-L-rhamnopyranosyl-(1-2)-{\beta}-D-glucopyranoside$ (GRG) isolated from Sophora japonica (Leguminosae) on the lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin ($PGE_2$) production by RAW 264.7 cell line. GRG significantly inhibited the LPS-induced NO and $PGE_2$ production. Consistent with these observations, GRG reduced the LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein and mRNA levels in a concentration-dependent manner. In addition, the release and the mRNA expression levels of tumor necrosis $factor-{\alpha}\;(TNF-{\alpha})$ and interleukin-6 (IL-6) were also reduced by GRG. Moreover, GRG attenuated the LPS-induced activation of nuclear factor-kappa B ($NF-{\kappa}B$), a transcription factor necessary for pro-inflammatory mediators, iNOS, COX-2, $TNF-{\alpha}$ and IL-6 expression. These results suggest that the down regulation of iNOS, COX-2, $TNF-{\alpha}$, and IL-6 expression by GRG are achieved by the downregulation of $NF-{\kappa}B$ activity, and that is also responsible for its anti-inflammatory effects.

Anti-Inflammatory Activity of Ethanol Extract of Sargassum miyabei Yendo via Inhibition of NF-κB and MAPK Activation (NF-κB와 MAPKs 활성 저해를 통한 미야베 모자반(Sargassum miyabei Yendo) 에탄올 추출물의 항염증 활성)

  • Kim, Min-Ji;Bae, Nan-Young;Kim, Koth-Bong-Woo-Ri;Park, Sun-Hee;Jang, Mi-Ran;Im, Moo-Hyeog;Ahn, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.442-451
    • /
    • 2016
  • The aim of this study was to investigate the anti-inflammatory effect of Sargassum miyabei Yendo ethanol extract (SMYEE) using RAW 264.7 cells and croton oil-induced Balb/c mice. SMYEE inhibited the production of pro-inflammatory cytokines [interleukin (IL)-6, tumor necrosis factor $(TNF)-{\alpha}$, and $IL-1{\beta}$] and nitric oxide in lipopolysaccharide (LPS)-induced inflammatory response. In addition, SMYEE suppressed the expression of inducible nitric oxide, cyclooxygenase-2, and nuclear factor-kappa B. Further, SMYEE inhibited the expression of mitogen-activated protein kinases (MAPKs), such as extra cellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase. In ear edema test, edema formation in the SMYEE treatment was lower than that in the positive control and was similar to that in the prednisolone treatment group. Photomicrographs of mice ear tissue showed a reduction in dermal thickness and number of infiltrated mast cells. Therefore, our results indicate that SMYEE exerts an anti-inflammatory effect via inhibition of nuclear factor ${NF}-{\kappa}B$ and MAPK activation and can be used as a natural source of anti-inflammatory compounds.

Efficacy Study of Activation on Macrophage in Germanium-fortified Yeast (게르마늄 강화 효모의 대식 세포 활성화 효과에 관한 연구)

  • Lee, Sung-Hee;Rho, Sook-Nyung;Sohn, Tsang-Uk
    • Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.246-251
    • /
    • 2005
  • The aim of this study was to evaluate an efficacy about activation on macrophage, using model that measured cell viability, nitric oxide (NO), iNOS (inducible nitric oxide synthase) expression and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) on Raw 264.7 cells following treatment of Germanium-fortified Yeast in 0, 5, 10, 25, 50, 100, $200\;{\mu}g/ml$ and the same concentration of dried yeast without germanium. Cell viability (%) and NO produced in activated-macrophage were dose-dependant, a significant increase of the cell viability (132.5%) and NO in $10\;{\mu}g/ml$ (p < 0.05). Increase in iNOS level was in $10\;{\mu}g/ml$. $TNF-{\alpha}$ was produced dose-dependant, e.g. in activated-macrophage with a significant increase of the $TNF-{\alpha}$ in 5 and $10\;{\mu}g/ml$ (p < 0.05). Therefore, Germanium-fortified Yeast had an efficacy of NO mediated iNOS and $TNF-{\alpha}$ production by activated macrophage. This result showed that Germanium-fortified Yeast induced activation of cellular immunity, returned to normalcy on injured immune system and procured anticancer system by activation of macrophage, which was important in immune and anticancer function.

Effects of plant-based Korean food extracts on lipopolysaccharide-stimulated production of inflammatory mediators in vitro

  • Lee, Sun Young;Kim, Yoo-Sun;Lim, Ji Ye;Chang, Namsoo;Kang, Myung-Hee;Oh, Se-Young;Lee, He-Jin;Kim, Hyesook;Kim, Yuri
    • Nutrition Research and Practice
    • /
    • v.8 no.3
    • /
    • pp.249-256
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: The traditional Korean diet is plant-based and rich in antioxidants. Previous studies have investigated the potential health benefits of individual nutrients of Korean foods. However, the cumulative effects of a Korean diet on inflammation remain poorly understood. Therefore, the aim of this study was to investigate the anti-inflammatory effects of a plant-based Korean diet. MATERIALS/METHODS: Using data from the Fifth Korean National Health and Nutrition Examination Survey, 75 individual plant food items were selected which represent over 1% of the total diet intake of the Korean diet. These items were classified into ten different food groups, and the vegetable (Veg) and fruit (Fruit) groups were studied based on their high antioxidant capacity. For comparison, a mixture of all ten groups (Mix) was prepared. To produce a model of inflammation with which to test these Veg, Fruit, and Mix plant-based Korean food extracts (PKE), RAW264.7 macrophages were treated with lipopolysaccharide (LPS). RESULTS: Levels of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$), as well as protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were found to be lower following PKE treatment. Furthermore, PKE treatment was found to suppress tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interleukin-6 (IL-6) via the nuclear transcription factor kappa-B ($NF-{\kappa}B$) signaling pathway. Overall, the Mix group exhibited the greatest anti-inflammatory effects compared with Veg and Fruit PKE group. CONCLUSIONS: Inhibition of LPS-induced pro-inflammatory mediators by the PKE tested was found to involve an inhibition of NF-kB activation. Moreover, PKE tested have the potential to ameliorate various inflammation-related diseases by limiting the excessive production of pro-inflammatory mediators.