• Title/Summary/Keyword: Inducible nitric oxide

Search Result 1,202, Processing Time 0.02 seconds

Triglycerides increase mRNA Expression of Pro-inflammatory Cytokines Via the iNOS in Jurkat T lymphocyte and U937 Monocyte Cell Lines (Jurkat T 림프구와 U937 단핵구에서 중성지방 처리 시 iNOS를 통한 염증성 사이토카인의 mRNA 발현 증가)

  • Chang, Jeong Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.1
    • /
    • pp.133-140
    • /
    • 2019
  • Triglycerides (TG) are one of the triggers of chronic inflammatory lesions in the blood vessels. In the key factors in the development of inflammatory diseases, Pro-inflammatory cytokines such as tumor necrosis factor-alpha $(TNF-){\alpha}$ and interleukin-1 beta ($IL-1{\beta}$) contribute to the development of inflammatory lesions by recruiting other immune cells in the inflamed area or causing cell necrotic death. In this study, I investigated the effect of Jurkat T lymphocytes and U937 monocytes involved in vascular inflammation development on the expression of $TNF-{\alpha}$ and $IL-1{\beta}$ on exposure to TGs. In Jurkat cells, mRNA expression of $TNF-{\alpha}$ is increased by exposure to TGs. However, the expression levels of $TNF-{\alpha}$ and $IL-1{\beta}$ were increased by TGs in U937 cells. To investigate whether inducible nitric oxide synthase (iNOS) is involved in the increase of expression of $TNF-{\alpha}$ and $IL-1{\beta}$ by TGs, treatment of W1400 (an iNOS inhibitor) resulted in recovery of expression level both $TNF-{\alpha}$ and $IL-1{\beta}$. Based on the present study, it was confirmed that the expression of $TNF-{\alpha}$ and $IL-1{\beta}$ in monocytes and T lymphocytes. This increased cytokines contribute to development of vascular inflammatory lesions. In addition, iNOS is involved in the increase of $TNF-{\alpha}$ and $IL-1{\beta}$ expression by TGs.

Free radical scavenging activity and protective effect of three glycyrrhiza varieties against hydrogen peroxide-induced oxidative stress in C6 glial cells (종류별 감초의 라디칼 소거능 및 H2O2에 의한 C6 glial 세포의 산화적 스트레스 개선 효과)

  • Kim, Ji Hyun;Cho, Min Ji;Park, Chan Hum;Cho, Eun Ju;Kim, Hyun Young
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.4
    • /
    • pp.327-334
    • /
    • 2020
  • Oxidative stress is common cause of neurodegenerative diseases. The purpose of this study is to investigate the in vitro free radical scavenging activity and protective effect of three Glycyrrhiza species including Glycyrrhiza uralensis, G. glabra, and a new variety of Glycyrrihza (Shinwongam, SW) against hydrogen peroxide-induced oxidative stress in C6 glial cells. In vitro assays, radical scavenging activities of G. uralensis, G. glabra, and SW against 2,2-diphenyl-1-picrylhydrazyl, ·OH, and O2- increased as concentration-dependent manner. In addition, the SW was found to contain the highest polyphenol and flavonoid contents. The treatment of H2O2 to C6 glial cell induced oxidative stress, whereas G. uralensis, G. glabra, and SW significantly increased the cell viability as dose-dependent manner. In particular, SW exerted stronger protective effect on H2O2-induced cytotoxicity, than G. uralensis and G. glabra. Furthermore, reactive oxygen species (ROS) formation was significantly elevated by H2O2 in C6 glial cells. However, treatments of G. uralensis, G. glabra, and SW decreased ROS formation. In addition, SW decreased pro-inflammatory related protein expression levels such as inducible nitric oxide synthase and cyclooxygenase-2, compared to H2O2-treated control group. These results indicated that G. uralensis and G. glavra, especially SW, may be useful for preventing from oxidative stress-induced neuronal damage by regulating inflammatory reaction.

Desmarestia tabacoides Ameliorates Lipopolysaccharide-induced Inflammatory Responses via Attenuated TLR4/MAPKs/NF-κB Signaling Cascade in RAW264.7 Cells (RAW 264.7 세포에서 담배잎산말의 TLR4/MAPKs/NF-κB 신호전달체계 조절을 통한 항염증 효과)

  • Hyun-Seo Yoon;Hyun An;Chung Mu Park
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.463-470
    • /
    • 2023
  • Desmarestia tabacoides Okamura is a brown macroalgae that is found worldwide. Although several genera of Desmarestia have been reported as having anti-tumorigenic, anti-melanogenic, and photoprotective properties, the anti-inflammatory activity of D. tabacoides Okamura has not yet been evaluated. In this study, we analyzed the anti-inflammatory mechanisms of D. tabacoides Okamura ethanol extract (DTEE) via the inhibition of nitric oxide (NO) and prostaglandin (PG) E2 production and the expression of their corresponding enzymes, inducible NO synthase (iNOS), and cyclooxygenase (COX)-2. In addition, their upstream signaling molecules were evaluated by Western blot analysis, such as nuclear factor (NF)-κB, mitogen-activated protein kinase (MAPK), and phosphoinositide-3-kinase (PI3K)/Akt, in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The DTEE treatment significantly inhibited LPS-induced NO and PGE2 production as well as the expression of their corresponding enzymes, iNOS, and COX-2 without cytotoxicity. The stimulated transcription factor NF-κB and upstream signaling molecules extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38 were attenuated by the DTEE treatment, which was statistically significant, while Akt did not provide any inhibitory effect. Moreover, the DTEE treatment significantly mitigated the LPS-activated adaptor molecules, toll-like receptor 4 (TLR4), and myeloid differentiation primary response 88 (MyD88) in the RAW 264.7 cells. These results suggest that DTEE attenuates TLR4-mediated inflammatory responses by inhibiting NF-κB activation and suppressing MAPK phosphorylation in LPS-stimulated RAW 264.7 cells.

Anti-inflammatory effects of Lycoris chejuensis callus using biorenovation (Biorenovation 기법 적용 제주상사화 callus의 항염증 활성)

  • Hyehyun Hong;Tae-Jin Park;Yu-Jung Lee;Jung-Hwan Kim;Seung-Young Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.197-203
    • /
    • 2023
  • Callus cultivation is a method for producing a large amount of tissue of a plant in the laboratory, regardless of the environment. Lycoris chejuensis, a plant species native to jeju island, is a member of the Lycoris family has been used as a traditional medicine for the treatment of diverse diseases. In this study, we evaluated anti-inflammatory effect of biorenovated Lycoris chejuensis callus (LCB) in lipopolysaccharide (LPS)-induced RAW264.7 cells. As a result, LCB was less toxic to the cells in the concentration range of 25, 50, and 100 ㎍/mL as shown by the improved viability of LCB treated cells than compared to Lycoris chejuensis callus (LC) treatment. In addition, LCB inhibited the generation of NO and prostaglandin E2 through the suppression of inducible nitric oxide synthase and cyclooxygenase-2 protein expression. LCB also attenuated the expression of interleukin-1β, interleukin-6 and tumor necrosis factor-α induced by LPS. The results suggest that LCB has anti-inflammatory activity on the LPS-induced inflammatory response and may be suitable for the development of potent functional cosmetic material.

Proinflammatory Cytokine and Nitric Oxide Production by Human Macrophages Stimulated with Trichomonas vaginalis

  • Han, Ik-Hwan;Goo, Sung-Young;Park, Soon-Jung;Hwang, Se-Jin;Kim, Yong-Seok;Yang, Michael Sungwoo;Ahn, Myoung-Hee;Ryu, Jae-Sook
    • Parasites, Hosts and Diseases
    • /
    • v.47 no.3
    • /
    • pp.205-212
    • /
    • 2009
  • Trichomonas vaginalis commonly causes vaginitis and perhaps cervicitis in women and urethritis in men and women. Macrophages are important immune cells in response to T. vaginalis infection. In this study, we investigated whether human macrophages could be involved in inflammation induced by T. vaginalis. Human monocyte-derived macrophages (HMDM) were co-cultured with T. vaginalis. Live, opsonized-live trichomonads, and T. vaginalis Iysates increased proinflammatory cytokines, such as TNF-${\alpha}$, IL-$1{\beta}$, and IL-6 by HMDM. The involvement of nuclear factor (NF)-${\kappa}B$ signaling pathway in cytokine production induced by T. vaginalis was confirmed by phosphorylation and nuclear translocation of p65 NF-${\kappa}B$. In addition, stimulation with live T. vaginalis induced marked augmentation of nitric oxide (NO) production and expression of inducible NO synthase (iNOS) levels in HMDM. However, trichomonad-induced NF-${\kappa}B$ activation and TNF-${\alpha}$ production in macrophages were significantly inhibited by inhibition of iNOS levels with L-NMMA (NO synthase inhibitor). Moreover, pretreatment with NF-${\kappa}B$ inhibitors (PDTC or Bay11-7082) caused human macrophages to produce less TNF-${\alpha}$. These results suggest that T. vaginalis stimulates human macrophages to produce proinflammatory cytokines, such as IL-1, IL-6, and TNF-${\alpha}$, and NO. In particular, we showed that T. vaginalis induced TNF-${\alpha}$ production in macrophages through NO-dependent activation of NF-${\kappa}B$, which might be closely involved in inflammation caused by T. vaginalis.

Inhibitory Effect of Aqueous Extract from Lonicera japonica Flower on LPS-induced Inflammatory Mediators in RAW 264.7 Macrophages. (금은화 수용성 추출물의 LPS 유도 염증매개물 억제 효과)

  • Yun, Young-Gab;Kim, Gyu-Min;Lee, Sung-Jun;Ryu, Seong-Hun;Jang, Seon-Il
    • The Korea Journal of Herbology
    • /
    • v.22 no.3
    • /
    • pp.117-125
    • /
    • 2007
  • Objective : Lonicera japonica (Caprifoliaceae) has long been used for treatment of infectious diseases in oriental countries. The aim of this study was to investigative the effect by which the aqueous extract from flower of L. japonica (LJFAE) inhibited the lipopolysaccharide (LPS)-induced inflammatory mediators in murine macrophages, RAW 264.7 cells Methods : The dried flowers of L. japonica were extracted with distilled water at $100^{\circ}C$ for 7 h. The extract was filtered through 0.45 ${\mu}m$ filter, freeze-dried. The dried extract was dissolved in Hank's balanced salt solution (HBSS) and filtered through 0.22 ${\mu}m$ filter before use. Accumulated nitrite, an oxidative product of nitric oxide (NO), was measured in the culture medium by the Griess reaction. The levels of prostaglandin E2 (PGE2), tumor necrosis factor-$\alpha$ (TNF-$\alpha$), interleukin-1$\beta$ (IL-1$\beta$), and IL-6 production, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression were measured by enzyme-linked immunosorbent assay and Western blot analysis. Results: LJFAE (10-400 ${\mu}g$/ml) per se had no cytotoxic effect in unstimulated macrophages, but LJFAE concentration-dependently reduced NO, PGE2, TNF-, IL-l, and IL-6 production and COX-2 activity caused by stimulation of LPS. The levels of iNOS and COX-2 protein expressions were markedly suppressed by the treatment with LJFAE in a concentration dependent manner. Conclusions : These results suggest that LJFAE suppress the NO and PGE2production in macrophages by inhibiting iNOS and COX-2 expression and these properties may contribute to the anti-inflammatory activity of Lonicera japonica.

  • PDF

Antiinflammatory Effect of Aqueous Extract from Red Pepper on Lipopolysaccharide Induced Inflammatory Responses in Murine Macrophages (홍고추가루 수용성 추출물의 항염증 효과)

  • Kwon, Hyuck-Se;Shin, Hyun-Kyung;Kwon, Sang-O;Yeo, Kyung-Mok;Kim, Sang-Moo;Kim, Bok-Nam;Kim, Jin-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.10
    • /
    • pp.1289-1294
    • /
    • 2009
  • Inflammation is a pivotal component of a variety of diseases, such as atherosclerosis and tumour progression. Various naturally occurring phytochemicals exhibit antiinflammatory activity and are considered to be potential drug candidates against inflammation-related pathological processes. Red pepper is the most consumed species in Korea. However, the antiinflammatory effects of red pepper have not been characterized. Thus, the present study was designed to evaluate the effects of the aqueous extract from red pepper (RPAE) on lipopolysaccharide (LPS)-induced inflammatory responses in murine macrophages. RPAE demonstrated strong antiinflammatory activity through its ability to reduce nitric oxide and prostaglandin $E_2$ production in the LPS-stimulated mouse macrophage cell, RAW264.7. It also inhibited the production of interleukin-6 (IL-6) on the LPS-stimulated RAW264.7 cells. Further study indicated that LPS-stimulated induction of inducible nitric oxide synthase and cyclooxygenase-2 was significantly inhibited by RPAE exposure (1,000 mg/mL) in RAW264.7 cells. Collectively, these data suggest that the use of RPAE may be a useful therapeutic approach to various inflammatory diseases.

Antioxidant and Anti-inflammatory Effects of Extracts from the Flowers of Weigela subsessilis on RAW 264.7 Macrophages (RAW 264.7 대식세포에 미치는 병꽃나무 꽃 추출물의 항산화 및 항염증 효과)

  • Yoo, Yung Choon;Lee, Gye Won;Cho, Young Ho
    • Journal of Life Science
    • /
    • v.26 no.3
    • /
    • pp.338-345
    • /
    • 2016
  • This study investigated the antioxidant and anti-inflammatory activity of ethanol extract from the flowers of Weigela subsessilis (WS-E) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The total polyphenol and flavonoid content was 719.19±0.04 μg tannic acid equivalents/ml and 644.87±0.02 μg quercetin equivalents/ml, respectively. The antioxidant activities of WS-E were measured by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and superoxide anion radical scavenging activity. The antioxidant activities of WS-E increased markedly, in a dose-dependent manner. To screen for anti-inflammatory agents, the inhibitory effects of WS-E on the production of proinflammatory cytokines in the LPS-stimulated RAW 264.7 macrophages was examined. WS-E had no effect on cell viability at a concentration of 100 μg/ml. Nitric oxide (NO) and interleukin (IL)-6 production were inhibited in a dose-dependent manner (p<0.05). WS-E had no effect on the production of tumor necrosis factor (TNF)-α at a concentration of 0.16–20 μg/ml but induced TNF-α at a concentration of 100 μg/ml. Inducible nitric oxide synthase (iNOS) expression was also inhibited at lower concentrations (p<0.05). In addition, WS-E reduced the activation of nuclear factor (NF)-κB by inhibition of inhibitoy (I) κB phosphorylation in RAW 264.7 macrophages upon stimulation with LPS (100 ng/ml) for 24 h but not that of mitogen-activated protein kinase (MAPK). These results suggest that WS-E may be a useful antioxidant and anti-inflammatory agent in functional cosmetics.

Effects of Lycii fructus Extracts on the Erectile Dysfunction by Chronic Ethanol Consumption in Rats (에탄올 음용으로 유도된 발기부전 동물모델에 대한 구기자 추출물의 개선효과)

  • Jung, Se Hee;Kim, Jung Hoon;Oh, Hong Geun;Shin, Eun Hye;Lee, Bong Gun;Park, Sang Hoon;Moon, Dae In;Park, Young Mi;Han, Ju Hee;Han, Jong Hyun;Park, Kwang Hyun;Park, Jong Sang;Han, Seung Jun;Ryu, Do Gon;Gwon, Gang Beom;Lee, Young Rae;Kim, Ok Jin;Lee, Hak Yong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.5
    • /
    • pp.625-630
    • /
    • 2013
  • Erectile dysfunction (ED) is a highly prevalent disorder that affects millions of men worldwide. ED is now considered an early manifestation of atherosclerosis, and consequently, a precursor of systemic vascular disease. Lycii fructus extracts (LFE) were administered for 4 weeks to assess the improving effects on ED. Animals were divided into one normal group and four LFE-treated groups (0, 0.3, 0.6, and 1.2 g/kg). We induced ED in the study animals by oral administration of 20% ethanol instead of water everyday for 4 weeks. This study was designed to investigate the effects of LFE on the mRNA levels of inducible nitric oxide synthase (iNOS) and endothelial NOS (eNOS) expression; NO levels of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP); blood profile; and erectile response of the corpus cavernosum of the rat penis. The libido of the LFE-administered male rats was higher than that of the ethanol control group. The erectile response of the corpus cavernosum was restored after LFE administration, to a level similar to the normal group. In addition, the iNOS in the corpus cavernosum of the male rats administered LFE decreased. In contrast, compared to the control group, LFE-administered male rats showed increased eNOS, NO and cGMP levels in the corpus cavernosum. These results indicate that LFE effectively restored ethanol-induced ED in male rats.

The Anti-inflammatory Effect of Cinnamomi Ramulus (계지의 항염 효과에 관한 연구)

  • Park Hi-Joon;Lee Ji-Suk;Lee Jae-Dong;Kim Nam-Jae;Pyo Ji-Hee;Kang Jun-Mo;Choe Il-Hwan;Kim Su-Young;Shim Bum-Sang;Lee Je-Hyun;Lim Sabina
    • The Journal of Korean Medicine
    • /
    • v.26 no.2 s.62
    • /
    • pp.140-151
    • /
    • 2005
  • Objectives: Cinnamomi Ramulus (CR), the young twig of Cinnamomum loureirri nees, has been used for treating symptoms related to pain, rheumatic arthritis and inflammation in Korean herb medicine. This study was carried out to investigate the anti-inflammatory effect of CR in vivo and in vitro. Methods: Extracts of CR were prepared and the chemical components of the extracts were examined by gas chromatography-mass spectrometry (GC-MS). The extracts were administrated to the rat paw edema model induced by carrageenan to evaluate the anti-inflammatory effect of CR. The expressions of nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 were also quantified in lipopolysaccharide(LPS)­induced RAW 264.7 macrophages to survey the effect of CR in vitro. The main components were cinnamaldehyde and coumarin. Results: We examined the anti-inflammatory activity of the $80\%$ ethanol extract of Cinnamomi Ramulus in vivo by using carrageenan-induced rat paw edema model. Maximum inhibition of $54.91\%$ was noted at the dose of l1000mg/kg after 2 hours of drug administration in carrageenan-induced rat paw edema and this showed a potent anti-inflammatory effect. Conclusions: The results showed that Cinnamomi Ramulus suppressed dose-dependently LPS-induced NO production in RAW 264.7 macrophages and also decreased iNOS protein expression. Cinnamomi Ramulus also showed a significant inhibitory effect in LPS-induced PGE2 production and COX-2 expression.

  • PDF