• Title/Summary/Keyword: Inducible nitric oxide

Search Result 1,202, Processing Time 0.036 seconds

Study on the anti-inflammatory effects of Cannabis sativa L. seed oil complex (햄프(Cannabis sativa L.)씨드오일 복합물의 항염증 효과에 관한 연구)

  • Chae-Hyun Kim;Se Gie Kim;Young-Ah Jang;Yong-Jin Kwon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.251-259
    • /
    • 2024
  • This study evaluated the potential of hemp seed oil (Cannabis sativa L. seed oil, CSO) and hemp seed oil complex (Cannabis sativa L. seed oil complex, CSOC) as an anti-inflammatory material through comparative analysis. Anti-inflammatory effects of CSO and CSOC were confirmed through lipopolysaccharide (LPS)-induced RAW264.7 model. As a result of confirming the inhibition of lipid oxidation through lipoxygenase inhibitory activity, CSO was not inhibited, but COSC was inhibited by more than 70%. As a result of confirming cytotoxicity through MTT analysis, CSO did not show cytotoxicity, but CSOC showed cytotoxicity at over 200 ㎍/ml. In LPS-induced RAW264.7, the expression of inducible nitric oxide synthase (iNOS) and the production of nitric oxide (NO) were significantly inhibited by CSOC compared to CSO. Additionally, CSOC significantly inhibited the expression of cyclooxygenase (COX)-2 and the production of prostaglandin E2 (PGE2). Through this study, we confirmed that CSOC has superior anti-inflammatory effects than CSO and has the potential to be used as an anti-inflammatory material.

The immune enhancement effect of Cheonggukjang Water Extract (CWE) via activation of NF-κB pathways in murine macrophage RAW 264.7 cells (RAW 264.7 대식세포에서 청국장 열수 추출물(Cheonggukjang Water Extract, CWE)의 면역 증강 효과)

  • Sehyeon Jang;San Kim;Se Jeong Kim;Sung Ran Yoon;Bo Ram So;Jung A Ryu;Jeong Min Park;Sung Keun Jung
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.282-288
    • /
    • 2023
  • Due to the COVID-19 pandemic, the immuneenhancing health functional food market that protects our bodies from pathogens such as viruses continues to grow. In this study, we aimed to prove the Cheonggukjang, a high-nutrient food with high protein, fat, and dietary fiber content, as an immuneenhancing nutraceutical. Cheonggukjang water extract (CWE) increased the production of nitric oxide, reactive oxygen species, and cytokines such interleukin (IL)-6, IL-1β, and tumor necrosis factor-α without affecting viability in RAW 264.7 cells. Furthermore, CWE significantly upregulated the expression of inducible nitric oxide synthase and cyclooxygenase-2 in RAW 264.7 cells. CWE enhanced the phosphorylation of I kappa B kinase α/β and I kappa B (IκB)α, as well as the degradation of IκBα. CWE also induced increased phosphorylation of nuclear factor-kappa B p65 and facilitated the redistribution of p65 from the cytoplasm to the nucleus in RAW 264.7 cells. These findings suggest that CWE has potential as a health functional food material that can enhance the innate immune response.

Immune stimulating effects of Astragalus membranaceus and Zanthoxylum schinifolium 1:1 mixture in Raw264.7 cells (Raw264.7 세포에서 황기와 산초 1:1 혼합물의 면역 증진 효과)

  • Il Je Cho;Yeong Eun Yu;Sang Min Lee;Eun Ok Kim;Joon Heum Park;Sea Kwang Ku
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.519-526
    • /
    • 2023
  • Present study explored immunostimulatory effects of Astragalus membranaceus and Zanthoxylum schinifolium 1:1 (w:w) mixture (AZM-1:1) in Raw264.7 cells, mouse macrophage derived cells. Treatment with 100-400 ㎍/mL of AZM-1:1 in Raw264.7 cells significantly increased nitric oxide production in parallel with inducible nitric oxide synthase mRNA expression without affecting cytotoxicity. In addition, AZM-1:1 dose-dependently increased prostaglandin E2 production in conditioned medium along with cyclooxygenase-2 mRNA induction. Moreover, AZM-1:1 induces the transcription of tumor necrosis factor-α, interleukin-1β, interleukin-6, and monocyte chemoattractant protein-1. Immunoblot analyses revealed that AZM-1:1 significantly increased the phosphorylation of mitogen-activated protein kinases, provoked phosphorylation-mediated degradation of inhibitory-κBα, and phosphorylated p65. Furthermore, treatment with AZM-1:1 promoted phagocytosis of Escherichia coli particle labeled with green fluorescence. Taken together, AZM-1:1 may be a promising nutraceutical for stimulation the innate immune system, including macrophages.

Effects of Achyranthoside C Dimethyl Ester on Heme Oxygenase-1 Expression and NO Production (Heme Oxygenase-1 발현과 NO 생성에 미치는 Achyranthoside C Dimethyl Ester의 효과)

  • Bang, Soo Young;Song, Ji Su;Moon, Hyung-In;Kim, YoungHee
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.976-983
    • /
    • 2015
  • Achyranthoside C dimethyl ester (ACDE) is an oleanolic acid glycoside from Achyranthes japonica which has been used in traditional medicine for the treatment of edema and arthritis. In this study, we investigated the anti-inflammatory effects of ACDE in RAW264.7 macrophages. ACDE significantly induced heme oxygenase-1 (HO-1) gene expression in RAW264.7 cells, while ACDE improved LPS-induced toxicity of cells. And ACDE induced nuclear translocation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates HO-1 expression. Further study demonstrated that ACDE-induced expression of HO-1 was inhibited by inhibitors of phosphatidylinositol 3-kinase (PI-3K) (LY294002), c-Jun kinase (JNK) (SP600125), extracellular signal regulated kinase (ERK) (PD98059) and p38 kinase (SB203580). Moreover, ACDE phosphorylated Akt, JNK, ERK, and p38 MAPK. In addition, ACDE inhibited LPS-induced NO secretion as well as inducible NO synthase (iNOS) expression in a dose-dependent manner. The inhibitory effects of ACDE on iNOS expression were abrogated by small interfering RNA (siRNA)-mediated knock-down of HO-1. Therefore, these results suggest that ACDE suppresses the production of pro-inflammatory mediator such as NO by inducing HO-1 expression via PI-3K/Akt/MAPK-Nrf2 signaling pathway. These findings could help us to understand the active principle included in the roots of A. japonica and the molecular mechanisms underlying anti-inflammatory action of ACDE.

Inhibition of Nitric Oxide Production by ladybug extracts(Harmonia axyridis) in LPS-activated BV-2 cells (무당벌레(Harmonia axyridis) 추출물에 의한 BV-2 세포주의 Nitric Oxide 생성 저해 활성)

  • Han Sang-Mi;Lee Sang-Han;Yun Chi-Young;Kang Seok-Woo;Lee Kyung-Gill;Kim Ik-Soo;Yun Eun-Young;Lee Pyeong-Jae;Kim Sun-Yeou;Hwang Jae-Sam
    • Korean journal of applied entomology
    • /
    • v.45 no.1 s.142
    • /
    • pp.31-36
    • /
    • 2006
  • Inflammation in the brain has known to be associated with the development of a various neurologiacal diseases. The hallmark of neuro-inflammation is the activation of microglia, brain macrophage. Pro-inflammatory compounds including nitric oxide(NO) are the main cause of neuro-degenerative disease such as Alzheimer's disease. In the study, we examined whether Harmonia axyridis extracts inhibit the NO production by a direct method using Griess reagent, western blotting and by RT-PCR(Reverse Transcription-Polymerase Chain Reactionin) the gene expression of inducible nitric oxide synthase(iNOS). Distilled water$(H_2O)$ and methanol(MeOH) extracts of H. axyridis inhibited the protein expression of TNF-a(Tumor Necrosis Factor) and IL-6(Interleukin) in LPS (Lipopolysaccharide) stimulated BV-2 cells at the concentration of 100 ng/ml. Incubation of BV-2 cells with the extracts of $H_2O$ of MeOH inhibited the LPS induced NO and iNOS protein. And this inhibition of iNOS protein is concordant with the inhibition of iNOS mRNA expression. These data suggested that H. axyridis extracts may play a crucial role in inhibiting the NO production.

Correlation of Nitric Oxide and Corticosteroids Along the Course of Sepsis (패혈증의 경과에 따른 혈중 스테로이드와 Nitric Oxide의 연관성)

  • Lee, Keu Sung;Kim, Young Sun;Lee, Hyoung No;Park, Joo Hun;Oh, Yoon Jung;Sheen, Seung Soo;Choi, Young Hwa;Park, Kwang Joo;Hwang, Sung Chul
    • Tuberculosis and Respiratory Diseases
    • /
    • v.62 no.4
    • /
    • pp.308-313
    • /
    • 2007
  • Background: The nitric oxide (NO) released by inducible NO synthase (iNOS) plays an important role in the pathophysiology of sepsis. Corticosteroids also play a role in the hemodynamic and inflammatory reactions in sepsis. Both have been shown to have a relationship theoretically, but their correlation and clinical impacts have rarely been evaluated. Methods: 26 patients with sepsis and 14 healthy controls were enrolled in this study. The initial random plasma total NO and the serum cortisol levels were measured. The same measurements were serially carried out on the $3^{rd}$, $5^{th}$, and $7^{th}$ days. Results: The initial total plasma levels of NO and cortisol were higher in the patients with sepsis than in the healthy controls. The total NO levels were higher in patients with severe sepsis than in the those with mild sepsis. There was a correlation between the total NO and cortisol level throughout the study. Conclusion: In patients with sepsis, the levels of plasma NO and cortisol were well correlated during the first week of sepsis, which suggests an interrelationship. However, the clinical and pathogenetic implications await further evaluation.