• Title/Summary/Keyword: Inducible nitric oxide

Search Result 1,202, Processing Time 0.024 seconds

Effect of Dipsaci Radix Water Extract on LPS-induced Inflammatory Response in RAW264.7 Mouse Macrophages (속단(續斷)의 RAW264.7 세포에서 LPS에 의해 유도되는 염증반응에 대한 효과)

  • Min, Ji-Young;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.24 no.4
    • /
    • pp.189-195
    • /
    • 2009
  • Objectives : In this study, the effect of Dipsaci Radix(DR, Dipsacus asperoides C.Y. Cheng et T. M. Ai) water extract on LPS-induced inflammatory response in RAW264.7 cells were investigated. Methods : Dried roots of DR was extracted with water for 3 h(DR-W extract). RAW264.7 cells, a mouse macrophage line, were incubated with different concentrations of DR-W extract for 30 min and then stimulated with LPS at indicated times. Cell toxicity was determined by MTT assay. The concentrations of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) were measured by Griess assay and enzyme immunoassay (EIA), respectively. The expression of inducible nitric oxide synthease (iNOS) and cyclooxyganase (COX)-2 mRNA and protein was determined by RT-PCR and Western blot, respectively. Results : DR-W extract was significantly inhibited LPS-induced productions of NO and PGE2 in RAW264.7 cells. DR-W extract was not suppressed the expressions of iNOS mRNA and protein in LPS-stimulated RAW264.7 cells. Conclusions : This study suggests that DR-W extract can attenuate inflammatory response via inhibition of the NO and PGE2 production in activated macrophages.

Nypa fruticans Wurmb Exerts Anti-Inflammatory Effects through NF-kB and MAPK Signaling Pathway

  • Hye-Jeong Park;So-Yeon Han;Jeong-Yong Park;Seo-Hyun Yun;Mi-Ji Noh;Soo-Yeon Kim;Tae-Won Jang;Jae-Ho Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.56-56
    • /
    • 2021
  • Nypa fruticans Wurmb is a mangrove plant belonging to Araceae family. N. fruticans is typically found in Southeast Asia, and in some parts of Queensland, Australia. N. fruticans has phytochemicals, phenolics, and flavonoids. In this study, we investigated the anti-inflammatory effects of the ethyl acetate fraction of N. fruticans (ENF) on the production and expression of cytokines and inflammatory mediators through the major signal transduction pathways. ENF attenuated the level of cytokines in a dose-dependent manner and decreased the production of nitric oxide (NO). ENF decreased the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) via alleviating transcription of nuclear factor-kappa B (NF-κB) by an inhibitor of nuclear factor-kappa B (IκB) degradation. Furthermore, mitogen-activated protein kinase (MAPK) signaling pathways (ERK1/2, JNK1/2, and p38) are known to be involved in the inflammatory response. Phosphorylations of ERK1/2, JNK1/2, and p38 were significantly decreased compared with the ENF-untreated control. Conclusively, ENF was related to alleviating various pro-inflammatory mediators through IκB/NF-κB and MAPK signaling pathways, including p65 translocation to the nucleus.

  • PDF

Beneficial Effects of Riboflavin on Inflammatory Bowel Disease (리보플라빈의 염증성 장질환 개선 효과)

  • Sang Hee Lee;Sun Mi Hong;Mi Jeong Sung
    • Journal of the Korean Society of Food Culture
    • /
    • v.39 no.1
    • /
    • pp.74-81
    • /
    • 2024
  • Ulcerative colitis (UC) is a chronic inflammatory intestinal disease characterized by an imbalance in immune function and the overexpression of inflammatory cytokines and mediators. Vitamin B2, also known as riboflavin (Libof), is an essential water-soluble vitamin with numerous beneficial properties, including antioxidant, anti-aging, anti-inflammatory, anti-nociceptive, and anti-cancer effects. In this study, we aimed to investigate the protective effects of Libof on dextran sulfate sodium (DSS)-induced experimental colitis. The C57BL/6 mice were used as the in vivo model of chronic colitis to investigate the anti-inflammatory effects of Libof. RAW 264.7 cells were used for the in vitro investigation of the molecular mechanisms underlying these effects. In vivo, Libof alleviated the DSS-induced disease activity index (DAI), colon length shortening, and colonic pathological damage. In vitro, Libof inhibited lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 production in RAW 264.7 cells. Moreover, Libof inhibited LPS-induced nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells. In conclusion, these findings indicate that Libof shows potential as an agent for the treatment of UC.

Anti-Inflammatory Effects of Hydroethanolic Extract from Ehretia asperula on Lipopolysaccharide-Stimulated RAW264.7 Macrophages

  • Bao Le;Vo Thi Kim Hong;Seung Hwan Yang
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.6
    • /
    • pp.1340-1347
    • /
    • 2024
  • Ehretia asperula is a medicinal plant of the Ehretiaceae family used to treat inflammatory disorders, but the underlying mechanisms are not fully elucidated. The anti-inflammatory potential was determined based on enzyme cyclooxygenase-2 (COX-2) inhibition, which showed that the 95% ethanol extract (95ECH) was most effective with a half-maximal inhibitory concentration (IC50) value of 34.09 ㎍/mL. The effects of 95ECH on phagocytosis, NO production, gene, and protein expression of the cyclooxygenase 2/prostaglandin E2 (COX-2/PGE2) and inducible nitric oxide synthase/ nitric oxide (iNOS/NO) pathways in lipopolysaccharide (LPS)-induced RAW264.7 cells were examined using the neutral red uptake and Griess assays, reverse-transcriptase polymerase chain reactions (RT-PCR), and enzyme-linked immunosorbent assays (ELISA). The results showed that 95ECH suppressed phagocytosis and the NO production in activated macrophage cells (p < 0.01). Conversely, 95ECH regulated the expression levels of mRNAs for cytokines tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) as well as the corresponding proteins. In addition, PGE2 production was inhibited in a dose-dependent manner by 95ECH, and the expression of iNOS and COX-2 mRNAs was decreased in activated macrophage cells, as expected. Therefore, 95ECH from E. asperula leaves contains potentially valuable compounds for use in inflammation management.

Di- and Sesqui-Terpenoids Isolated from the Pods of Sindora sumatrana and Their Potential to Inhibit Lipopolysaccharide-Induced Nitric Oxide Production

  • Jang, Dae-Sik;Min, Hye-Young;Jeong, Yeon-Hee;Lee, Sang-Kook;Seo, Eun-Kyoung
    • Archives of Pharmacal Research
    • /
    • v.27 no.3
    • /
    • pp.291-294
    • /
    • 2004
  • Activity-guided fractionation of the n-hexane and ${CHCl_3}-soluble$ fractions of Sindora sumatrana using a bioassay based on the inhibition of lipopolysaccharide (LPS)-induced nitric oxide (NO) production by inducible nitric oxide synthase (iNOS) in murine macrophage RAW 264.7 cells led to the isolation of the known compound, $(+)-7{\beta}-acetoxy-15,16-epoxy-3$, 13(16), 14-clero-datriene-18-oic acid (2) as an active constituent. In addition, a new trans-clerodane diterpenoid, (+)-2-oxokolavenic acid (1), together with six known compounds, (+)-3, 13-clerodadiene-16,15-olide-18-oic acid (3), $(+)-7{\beta}-acetoxy-3$,13-clerodadiene-16,15-olide-18-oic acid (4), $(+)-7{\beta}-acetoxy-16-hydroxy-3$,13-clerodadiene-16, 15-olide-18-oic acid (5), ${\beta}-caryophyllene$ oxide (6), $clovane-2{\beta},9{\beta}-diol (7),{\;}and{\;}caryolane-1,9{\beta}-diol$ (8) were isolated and found to be inactive. The structure of compound 1 was determined using physical and spectroscopic methods such as 1D and 2D-NMR experiments. The known compounds 2-8 were identified by the spectroscopic data and by comparison with the published values. Of eight isolates (1-8), only compound 2 exhibited an iNOS inhibitory activity with $IC_{50}$/ value of $51.6{\;}\mu\textrm{m}M$.

Anti-inflammatory effects of Chrysanthemum boreale flower (산국 꽃의 항염 활성 연구)

  • You, Ki-Sun;Bang, Chan-Sung;Lee, Kyung-Jin;Ham, In-Hye;Choi, Ho-Young
    • The Korea Journal of Herbology
    • /
    • v.26 no.4
    • /
    • pp.31-37
    • /
    • 2011
  • Objectives : Chrysanthemum boreale flower is widely distributed in Korea, Japan, China, and Eastern countries. C. boreale flower is also one of the herbs used for the treatment of various inflammatory disease in Korean Medicine. So, this research was designed to study anti-inflammatory effect of C. boreale flower and its mechanism. Methods : We investigated nitro oxide (NO) and prostaglandin $E_2$ ($PGE_2$) production by ELISA. And expressions of inducible nitric oxide synthase (iNOS), Cyclooxygenase-2 (COX-2) and nuclear factor-${\kappa}B$ P50/65 (NF-${\kappa}B$ P50, NF-${\kappa}B$ P65) were measured in RAW 264.7 murine macrophage cells induced by LPS. Results : MeOH ex., EtOAc fr., $CHCl_3$ fr. and Water fr. of C. boreale flower showed anti-inflammatory effect through inhibition of NO and PGE expression respectively. Among them, EtOAc fr. and $CHCl_3$ fr. inhibited production of NO and $PGE_2$ through inhibition of iNOS and COX-2 expression. And MeOH ex., EtOAc fr. and $CHCl_3$ fr. inhibited translocation of NF-${\kappa}B$ P65, NF-${\kappa}B$ P50 by inhibiting phosphrylation of $I{\kappa}B$. Conclusions : MeOH ex. EtOAc fr, $CHCl_3$ fr., and Water fr. of the C. boreale flower have anti-inflammatory activity.

Anti-Inflammatory Effects of Water Chestnut Extract on Cytokine Responses via Nuclear Factor-κB-signaling Pathway

  • Kim, Bora;Kim, Jin Eun;Choi, Byung-Kook;Kim, Hyun-Soo
    • Biomolecules & Therapeutics
    • /
    • v.23 no.1
    • /
    • pp.90-97
    • /
    • 2015
  • Water chestnut (Trapa japonica Flerov.) is an annual aquatic plant. In the present study, we showed that the treatment of water chestnut extracted with boiling water resulted in a significant increase 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity and decrease the intracellular $H_2O_2$-induced accumulation of reactive oxygen species. In addition, water chestnut extract (WCE) inhibited lipopolysaccharide (LPS)-induced nitric oxide production and suppressed mRNA and protein expression of the inducible nitric oxide synthase gene. The cytokine array results showed that WCE inhibited inflammatory cytokine secretion. Also, WCE reduced tumor necrosis factor-${\alpha}$- and interleukin-6-induced nuclear factor-${\kappa}B$ activity. Furthermore, during sodium lauryl sulfate (SLS)-induced irritation of human skin, WCE reduced SLS-induced skin erythema and improved barrier regeneration. These results indicate that WCE may be a promising topical anti-inflammatory agent.

Effect of Sanyeoleumja on Inflammatory Response of RAW 264.7 Cells (RAW 264.7 cell의 염증반응에 대한 산열음자(散熱飮子)의 항염증 효과)

  • Kim, Tae Yeon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.1
    • /
    • pp.7-13
    • /
    • 2020
  • Sanyeoleumja (SY) is the traditional Korean medicinal prescription for the treatment of inflammatory diseases of eyes. In this study, the anti-inflammatory effects of SY water extract were investigated. To measure the anti-inflammatory effects of SY, we examined the productions of inflammatory factor including nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), interleukin-1β (IL-1β) in lipopolysaccharide (LPS)-induced RAW 264.7 cells. SY inhibited NO and PGE2 production in a dose dependent manner and decreased the protein and mRNA expression of iNOS and COX-2. Also, SY decreased the mRNA expression of interleukin-6 (IL-6) and interleukin-1β (IL-1β). In conclusion, SY downregulated LPS-induced inflammatory factor productions, which could be a clinical basis for inflammatory diseases.

Immune-stimulating Effect of Lactobacillus plantarum Ln1 Isolated from the Traditional Korean Fermented Food, Kimchi

  • Jang, Hye Ji;Yu, Hyung-Seok;Lee, Na-Kyoung;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.6
    • /
    • pp.926-929
    • /
    • 2020
  • This study aimed to determine the immune-stimulating effects of heat-killed Lactobacillus plantarum Ln1 (HK-Ln1) through the production of nitric oxide (NO) and pro-inflammatory cytokine achieved by inducing NF-κB and mitogen-activated protein kinase (MAPK)-signaling pathways in macrophages. HK-Ln1 showed higher NO and cytokine production compared to control (nonstimulated lipopolysaccharide); in addition, the expression of inducible nitric oxide synthase (iNOS) was induced through HK-Ln1treatment. The phosphorylation of IκB-α and p65 increased following treatment by HK-Ln1, which implicates IκB-α degradation and the translocation of p65 to nucleus. In addition, the phosphorylation of MAPKs, ERK 1/2, JNK, and p38 was induced following HK-Ln1 treatment.

Nitric Oxide Generation from Peritoneal Macrophages by Human Chorionic Gonadotropin (사람 융모 성선 자극 호르몬에 의한 복강 대식세로로부터 산화질소의 발생)

  • Lee, Eun-Hee;Shin, Tae-Yong;Kim, Hyung-Min
    • YAKHAK HOEJI
    • /
    • v.41 no.3
    • /
    • pp.365-369
    • /
    • 1997
  • Human chorionic gonadotropin (hCG) is a placental hormone and is involved in maintenance of the corpus luteum during pregnancy. In the present study, effect of hCG on nitiric ox ide (NO) generation from peritoneal macrophage was examined. hCG ahd no effect on NO generation by itself, whereas recombinant interferon- ${\gamma}$ (rIFN-${\gamma}$) alone had modest activity. When hCG was used in combination with rIFN-${\gamma}$, there was a marked cooperative induction of NO generation in a dose-dependent manner. The optimal effect of hCG on NO generation was shown at 6 hr after treatment with rIFN-${\gamma}$. Furthermore, northern blot analysis of showed that hCG increased the expression of inducible NO synthase(iNOS) gene. These results suggest that hCG induces NO generation from macrophages by increasing the expression of iNOS gene.

  • PDF